Arkiv för Matematik

  • Ark. Mat.
  • Volume 44, Number 1 (2006), 111-131.

Plurisubharmonic functions characterized by one-variable extremal functions

Sione Ma‘u

Full-text: Open access

Article information

Source
Ark. Mat., Volume 44, Number 1 (2006), 111-131.

Dates
Received: 2 August 2004
Revised: 7 October 2005
First available in Project Euclid: 31 January 2017

Permanent link to this document
https://projecteuclid.org/euclid.afm/1485898927

Digital Object Identifier
doi:10.1007/s11512-005-0011-4

Mathematical Reviews number (MathSciNet)
MR2237216

Rights
2006 © Institut Mittag-Leffler

Citation

Ma‘u, Sione. Plurisubharmonic functions characterized by one-variable extremal functions. Ark. Mat. 44 (2006), no. 1, 111--131. doi:10.1007/s11512-005-0011-4. https://projecteuclid.org/euclid.afm/1485898927


Export citation

Bibliography

  • Baran, M., Plurisubharmonic extremal functions and complex foliations for the complement of convex sets in Rn, Michigan Math. J. 39 (1992), 395–404.
  • Bos, L., Calvi, J. and Levenberg, N., On the Siciak extremal function for real compact convex sets, Ark. Mat. 39 (2001), 245–262.
  • Bloom, T., Some applications of the Robin function to multivariable approximation theory, J. Approx. Theory 92 (1988), 1–21.
  • Bloom, T., Levenberg, N. and Ma‘u, S., Robin functions and extremal functions, Ann. Polon. Math. 80 (2003), 55–84.
  • Brelot, M., Lectures on Potential Theory, 2nd ed., Tata Institute of Fundamental Research, Bombay, 1960.
  • Burns, D., Levenberg, N. and Ma‘u, S., Pluripotential theory for convex bodies in RN, Math. Z. 250 (2005), 91–111.
  • Klimek, M., Pluripotential Theory, Clarendon Press, Oxford, 1991.
  • Klimek, M., Metrics associated with extremal plurisubharmonic functions, Proc. Amer. Math. Soc. 123 (1995), 2763–2770.
  • Lundin, M., The extremal plurisubharmonic function for the complement of convex, symmetric subsets of Rn, Michigan Math. J. 32 (1985), 197–201.
  • Ma‘u, S., Plurisubharmonic Functions of Logarithmic Growth, Ph.D. thesis, University of Auckland, Auckland, 2003.
  • Ransford, T., Potential Theory in the Complex Plane, Cambridge University Press, Cambridge, 1995.
  • Siciak, J., On metrics associated with extremal plurisubharmonic functions, Bull. Pol. Acad. Sci. Math. 45 (1997), 151–161.