Arkiv för Matematik

  • Ark. Mat.
  • Volume 42, Number 1 (2004), 119-152.

Fundamental solutions of the acoustic and diffusion equations in nonhomogeneous medium

Victor P. Palamodov

Full-text: Open access


A fundamental solution of the acoustical equation with a variable refraction coefficient is constructed. The solution satisfies the limiting absorption and radiation conditions. The optimal high frequency estimate is proved for square means of the solution. The source function for the diffusion equation is a by-product of this construction.


Partially supported by a stipend of the Mathematical Scientific Research Institute at Berkeley, 2001.

Article information

Ark. Mat., Volume 42, Number 1 (2004), 119-152.

Received: 20 November 2002
Revised: 7 March 2003
First available in Project Euclid: 31 January 2017

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

2004 © Institut Mittag-Leffler


Palamodov, Victor P. Fundamental solutions of the acoustic and diffusion equations in nonhomogeneous medium. Ark. Mat. 42 (2004), no. 1, 119--152. doi:10.1007/BF02432913.

Export citation


  • Arridge, S. R., Optical tomography in medical imaging, Inverse Problems 15 (1999), R41-R93.
  • Babich, V. M. and Buldyrev, V. S., Short-Wavelength Diffraction Theory. Asymptotic Methods, Springer-Verlag, Berlin, 1991.
  • Bishop, R. L. and Crittenden, R. J., Geometry of Manifolds, Academic Press, New York-London, 1964.
  • Burq, N., Semi-classical estimates for the resolvent in nontrapping geometries, Int. Math. Res. Not. 5 (2002), 221–241.
  • Duistermaat, J. J. and Hörmander, L., Fourier integral operators II, Acta Math. 128 (1972), 183–269.
  • Eidus, D. M., The principle of limiting absorption, Mat. Sb. 57 (99), (1962), 13–44 (Russian). English transl.: Amer. Math. Soc. Transl. 47 (1965), 157–191.
  • Hadamard, J., Le problème de Cauchy et les équations aux dérivées partielles linéares hyperboliques, Hermann, Paris, 1932.
  • Palamodov, V. P., Stability in diffraction tomography and a nonlinear “basic theorem”, J. Anal. Math. 91 (2003), 247–268.
  • Sobolev, S. L., Méthode nouvelle à resoudre le problème de Cauchy pour les équations linéares hyperboliques normales. Mat. Sb. 1 (43) (1936), 39–72.