Arkiv för Matematik

  • Ark. Mat.
  • Volume 41, Number 2 (2003), 307-339.

Wiener regularity for large solutions of nonlinear equations

Denis A. Labutin

Full-text: Open access

Article information

Source
Ark. Mat. Volume 41, Number 2 (2003), 307-339.

Dates
Received: 20 December 2001
First available in Project Euclid: 31 January 2017

Permanent link to this document
https://projecteuclid.org/euclid.afm/1485898808

Digital Object Identifier
doi:10.1007/BF02390818

Zentralblatt MATH identifier
1071.35048

Rights
2003 © Institut Mittag-Leffler

Citation

Labutin, Denis A. Wiener regularity for large solutions of nonlinear equations. Ark. Mat. 41 (2003), no. 2, 307--339. doi:10.1007/BF02390818. https://projecteuclid.org/euclid.afm/1485898808


Export citation

References

  • Adams, D. R., Sets and functions of finite Lp-capacity, Indiana Univ. Math. J. 27 (1978), 611–627.
  • Adams, D. R., Lp potential theory techniques and nonlinear PDE, in Potential Theory (Nagoya, 1990) (Kishi, M., ed.), pp. 1–15, de Gruyter, Berlin, 1992.
  • Adams, D. R., Potential and capacity before and after Wiener, in Proceedings of the Norbert Wiener Centenary Congress, 1994 (East Lansing, Mich., 1994) (Mandrekar, V. and Masani, P. R., eds.), pp. 63–83, Proc. Sympos. Appl. Math. 52, Amer. Math. Soc., Providence, R. I., 1997.
  • Adams, D. R. and Heard, A., The necessity of the Wiener test for some semi-linear elliptic equations, Indiana Univ. Math. J. 41 (1992), 109–124.
  • Adams, D. R. and Hedberg, L. I., Function Spaces and Potential Theory, Springer-Verlag, Berlin-Heidelberg, 1996.
  • Adams, D. R. and Pierre, M., Capacitary strong type estimates in semilinear problems, Ann. Inst. Fourier (Grenoble) 41 (1991), 117–135.
  • Adams, D. R. and Polking, J. C., The equivalence of two definitions of capacity, Proc. Amer. Math. Soc. 37 (1973), 529–534.
  • Baras, P. and Pierre, M., Singularités éliminables pour des équations semi-linéaires, Ann. Inst. Fourier (Grenoble) 34:1 (1984), 185–206.
  • Bauman, P., A Wiener test for nondivergence structure, second-order elliptic equations, Indiana Univ. Math. J. 34 (1985), 825–844.
  • Brelot, M., Lectures on Potential Theory, Tata Institute of Fundamental Research, Bombay, 1967.
  • Brezis, M. and Véron, L., Removable singularities for some nonlinear elliptic equations, Arch. Rational Mech. Anal. 75 (1980/81), 1–6.
  • Carleson, L., Selected Problems on Exceptional Sets, Van Nostrand, Princeton, N. J., 1967.
  • Dal Maso, G. and Mosco, U., Wiener criteria end energy decay for relaxed Dirichlet problems, Arch. Rational Mech. Anal. 95 (1986), 345–387.
  • Delanoë, P., Generalized stereographic projections with prescribed scalar curvature, in Geometry and Nonlinear Partial Differential Equations (Fayetteville, Ark., 1990), (Oliker, V. and Treibergs, A., eds.), Contemp. Math. 127, pp. 17–25, Amer. Math. Soc., Providence, R. I., 1992.
  • Delmas, J.-F. and Dhersin, J.-S., Characterization of G-regularity for super-Brownian motion and consequences for parabolic partial differential equations, Ann. Probab. 27 (1999), 731–750.
  • Delmas, J.-F. and Dhersin, J.-S., Kolmogorov’s test for the Brownian snake, Ann. Probab. 29 (2001), 305–316.
  • Dhersin, J.-S. and Le Gall, J.-F., Kiener’s test for super-Brownian motion and the Brownian snake, Probab. Theory Related Fields 108 (1997), 103–129.
  • Dhersin, J.-S. and Le Gall, J.-F., Kolmogorov’s test for super-Brownian motion, Ann. Probab. 26 (1998), 1041–1056.
  • Dynkin, E. B., A probabilistic approach to one class of nonlinear differential equations, Probab. Theory Related Fields 89 (1991), 89–115.
  • Dynkin, E. B., An Introduction to Branching Measure-valued Processes, Amer. Math. Soc., Providence, R. I., 1994.
  • Dynkin, E. B., Diffusions, Superdiffusions and Partial Differential Equations, Amer. Math. Soc. Colloq. Publ. 50, Amer. Math. Soc., Providence, R. I., 2002.
  • Dynkin, E. B. and Kuznetsov, S. E., superdiffusions and removable singularities for quasilinear partial differential equations, Comm. Pure Appl. Math. 49 (1996), 125–176.
  • Dynkin, E. B. and Kuznetsov, S. E., Fine topology and fine trace on the boundary associated with a class of semilinear differential equations, Comm. Pure Appl. Math. 51 (1998), 897–936.
  • Etheridge, A. M., An Introduction to Superprocesses, Amer. Math. Soc., Providence, R. I., 2000.
  • Evans, L. C. and Gariepy, R. F., Wiener’s criterion for the heat equation, Arch. Rational Mech. Anal. 78 (1982), 293–314.
  • Fabes, E. B., Garofalo, N. and Lanconelli, E., Wiener’s criterion for divergence form parabolic operators with C1-Dini continuous coefficients, Duke Math. J. 59 (1989), 191–232.
  • Fabes, E., Jerison, D. and Kenig, C., The Wiener test for degenerate elliptic equations, Ann. Inst. Fourier (Grenoble) 32:3 (1982), vi, 151–182.
  • Finn, D. L., Behavior of positive solutions to Δgu=uq+Su with prescribed singularities, Indiana Univ. Math. J. 49 (2000), 177–219.
  • Finn, D. L. and McOwen, R. C., Singularities and asymptotics for the equation Δgu=uq+Su, Indiana Univ. Math. J. 42 (1993), 1487–1523.
  • Gariepy, R. and Ziemer, W. P., A regularity condition at the boundary for solutions of quasilinear elliptic equations, Arch. Rational Mech. Anal. 67 (1977), 25–39.
  • Grillot, M. and Véron, L., Boundary trace of the solutions of the prescribed Gaussian curvature equation, Proc. Roy. Soc. Edinburgh Sect. A 130 (2000), 527–560.
  • Hardy, G. H., Littlewood, J. E. and Pólya, G., Inequalities, Cambridge Univ. Press, Cambridge, 1988.
  • Havin, V. P. and Maźya, V. G., Nonlinear potential theory, Uspekhi Mat. Nauk 27:6 (1972), 67–138 (Russian). English transl.: Russian Math. Surveys 27:6 (1972), 71–148.
  • Heinonen, J., Kilpeläinen, T. and Martio, O., Nonlinear Potential Theory of Degenerate Elliptic Equations, Oxford Univ. Press, Oxford, 1993.
  • Hörmander, L., Notions of Convexity, Birkhäuser, Boston, Mass., 1994.
  • Kalton, N. J. and Verbitsky, I. E., Nonlinear equations and weighted norm inequalities, Trans. Amer. Math. Soc. 351 (1999), 3441–3497.
  • Keller, J. B., On solutions of δu=f(u), Comm. Pure Appl. Math. 10 (1957), 503–510.
  • Kilpeläinen, T. and Malý, J., The Wiener test and potential estimates for quasilinear elliptic equations, Acta Math. 172 (1994), 137–161.
  • Kondratyev, V. A. and Nikishkin, V. A., On positive solutions of singular boundary value problems for the equation δu=uk, Russ. J. Math. Phys. 1 (1993), 131–135.
  • Kuznetsov, S. E., Polar boundary sets for superdiffusions and removable lateral singularities for nonlinear parabolic PDEs, Comm. Pure Appl. Math. 51 (1998), 303–340.
  • Kuznetsov, S. E., Removable lateral singularities of semilinear parabolic PDEs and Besov capacities, J. Funct. Anal. 156 (1998), 366–383.
  • Kuznetsov, S. E., Removable singularities for Lu=Φ(u) and Orlicz capacities, J. Funct. Anal. 170 (2000), 428–449.
  • Labutin, D. A., Potential estimates for a class of fully nonlinear elliptic equations, Duke Math. J. 111 (2002), 1–49.
  • Labutin, D. A., Thinness for scalar-negative singular Yamabe metrics, In preparation.
  • Le Gall, J.-F., Nonnegative solutions of δu=u2 in the unit disk, C. R. Acad. Sci. Paris Sér. I Math. 317 (1993), 873–878.
  • Le Gall, J.-F., A path-valued Markov process and its connections with partial differential equations, in First European Congress of Mathematics (Paris, 1992), Vol. II (Joseph, A., Mignot, F., Murat, F., Prum, B. and Rentschler, R., eds.), pp. 185–212. Birkhäuser, Basel, 1994.
  • Le Gall, J.-F., A probabilistic Poisson representation for positive solutions of δu=u2 in a planar domain, Comm. Pure Appl. Math. 50 (1997), 69–103.
  • Le Gall, J.-F., Branching processes, random trees and superprocesses, in Proceedings of the International Congress of Mathematicians (Berlin, 1998), Doc. Math., Extra Vol. III, pp. 279–289, 1998.
  • Le Gall, J.-F., Spatial Branching Processes, Random Snakes and Partial Differential Equations. Lectures in Mathematics ETH Zürich, Birkhäuser, Basel, 1999.
  • Lindqvist, P. and Martio, O., Two theorems of N. Wiener for solutions of quasilinear elliptic equations, Acta Math. 155 (1985), 153–171.
  • Littman, W., Stampacchia, G. and Weinberger, H. F., Regular points for elliptic equations with discontinuous coefficients, Ann. Scuola Norm. Sup. Pisa 17 (1963), 43–77.
  • Loewner, C. and Nirenberg, L., Partial differential equations invariant under conformal or projective transformations, in Contributions to Analysis (Ahlfors, L. V., Kra, I., Maskit, B. and Nirenberg, L., eds.), pp. 245–272, Academic Press, New York, 1974.
  • Malý, J. and Ziemer, W. P., Fine Regularity of Solutions of Elliptic Partial Differential Equations, Amer. Math. Soc., Providence, R. I., 1997.
  • Marcus, M. and Véron, L., Uniqueness and asymptotic behavior of solutions with boundary blow-up for a class of nonlinear elliptic equations, Ann. Inst. H. Poincaré Anal. Non Linéaire 14 (1997), 237–274.
  • Marcus, M. and Véron, L., The boundary trace of positive solutions of semilinear elliptic equations: the subcritical case, Arch. Rational Mech. Anal. 144 (1998), 201–231.
  • Marcus, M. and Véron, L., The boundary trace of positive solutions of semilinear elliptic equations: the supercritical case, J. Math. Pures Appl. 77 (1998), 481–524.
  • Marcus, M. and Véron, L., Initial trace of positive solutions of some nonlinear parabolic equations, Comm. Partial Differential Equations 24 (1999), 1445–1499.
  • Marcus, M. and Véron, L., Removable singularities and boundary traces, J. Math. Pures Appl. 80 (2001), 879–900.
  • Maźya, V. G., The continuity at a boundary point of solutions of quasilinear equations, Vestnik Leningrad. Univ. Mat. Mekh. Astronom. 25:13 (1970), 42–55. Correction, ibid. 27:1 (1972), 160 (Russian). English transl.: Vestnik Leningrad Univ. Math. 3 (1976), 225–242.
  • Maźya, V. G., Removable singularities of bounded solutions of quasilinear elliptic equations of arbitrary order, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov (LOMI) 26 (1972), 116–130 (Russian). English transl.: J. Soviet Math. 3 (1975), 480–492.
  • Maźya, V. G., Sobolev Spaces, Springer-Verlag, Berlin, 1985.
  • Maźya, V. G., Unsolved problems connected with the Wiener criterion, in The Legacy of Norbert Wiener: A Centennial Symposium (Cambridge, Mass., 1994) (Jerison, D., Singer, I. M. and Strooch, D. W., eds.), pp. 199–208 Proc. Sympos. Pure Math. 60, Amer. Math. Soc., Providence, R. I., 1997.
  • Maźya, V. G., The Wiener test for higher order elliptic equations, Duke Math. J. 115 (2002), 479–512.
  • Maźya, V. G., The Wiener test for higher order elliptic equations, in Proceedings of the International Congress of Mathematicians (Beijing, 2002), to appear.
  • McOwen, R. C., Results and open questions on the singular Yamabe problem, in Dynamical Systems and Differential Equations, Vol. II (Springfield, Mo., 1996). Discrete Contin. Dynam. Systems, Added Volume II (Chen, W. and Hu, S., eds.), pp. 123–132, 1998.
  • Osserman, R., On the inequality δu≥f(u), Pacific J. Math. 7 (1957), 1641–1647.
  • Perkins, E. A., Polar sets and multiple points for super-Brownian motion, Ann. Probab. 18 (1990), 453–491.
  • Perkins, E. A., Measure-valued branching diffusions and interactions, in Proceedings of the International Congress of Mathematicians (Zürich, 1994), Vol. 2 (Chatterji, S. D., ed.), pp. 1036–1046, Birkhäuser, Basel, 1995.
  • Schoen, R. and Yau, S.-T., Conformally flat manifolds, Kleinian groups and scalar curvature, Invent. Math. 92 (1988), 47–71.
  • Skrypnik, I. V., Methods for Analysis of Nonlinear Elliptic Boundary Value Problems, Amer. Math. Soc., Providence, R. I., 1994.
  • Trudinger, N. S. and Wang, X.-J., Hessian measures I, Topol. Methods Nonlinear Anal. 10 (1997), 225–239.
  • Trudinger, N. S. and Wang, X.-J., Hessian measures II, Ann. of Math. 150 (1999), 579–604.
  • Trudinger, N. S. and Wang, X.-J., On the weak continuity of elliptic operators and applications to potential theory, Amer. J. Math. 124 (2002), 369–410.
  • Trudinger, N. S. and Wang, X.-J., Hessian measures III, J. Funct. Anal. 193 (2002), 1–23.
  • Vázquez, J. L. and Véron, L., Singularities of elliptic equations with an exponential nonlinearity, Math. Ann. 269 (1984), 119–135.
  • Véron, L., Singularities of Solutions of Second Order Quasilinear Equations, Longman, Harlow, 1996.
  • Véron, L., Generalized boundary value problem for nonlinear elliptic equations, in Proceedings of the USA-Chile Workhop on Nonlinear Analysis (Vinã del Mar-Valparaiso, 2000) (Manasevich, R. and Rabinowitz, P., eds.), Electron. J. Differential Equations 6, pp. 313–342. Southwest Texas State Univ., San Marcos, Tex., 2001.
  • Wiener, N., Certain notions in potential theory, J. Math. Phys. 3 (1924), 24–51.
  • Wiener, N., The Dirichlet problem, J. Math. Phys. 3 (1924), 127–146.
  • Ziemer, W. P., Weakly Differentiable Functions. Sobolev Spaces and Functions of Bounded Variation, Springer-Verlag, New York, 1989.