Arkiv för Matematik

  • Ark. Mat.
  • Volume 40, Number 1 (2002), 133-144.

Lp-norms of Hermite polynomials and an extremal problem on Wiener chaos

Lars Larsson-Cohn

Full-text: Open access


We establish sharp asymptotics for the Lp-norm of Hermite polynomials and prove convergence in distribution of suitably normalized Wick powers. The results are combined with numerical integration to study an extremal problem on Wiener chaos.

Article information

Ark. Mat., Volume 40, Number 1 (2002), 133-144.

Received: 26 October 2000
First available in Project Euclid: 31 January 2017

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

2002 © Institut Mittag-Leffler


Larsson-Cohn, Lars. L p -norms of Hermite polynomials and an extremal problem on Wiener chaos. Ark. Mat. 40 (2002), no. 1, 133--144. doi:10.1007/BF02384506.

Export citation


  • Aptekarev, A. I., Buyarov, V. S. and Dehesa, J. S., Asymptotic behaviour of the Lp-norms and the entropy for general orthogonal polynomials, Mat. Sb. 185:8 (1994), 3–30 (Russian). English transl.: Russian Acad. Sci. Sb. Math. 82 (1995), 373–395.
  • Billingsley, P., Convergence of Probability Measures, Wiley, New York, 1968.
  • de Bruijn, N. G., Asymptotic Methods in Analysis, North-Holland, Amsterdam, 1958.
  • Janson, S., Gaussian Hilbert Spaces, Cambridge Univ. Press, Cambridge, 1997.
  • Katznelson, Y., An Introduction to Harmonic Analysis, Wiley, New York, 1976.
  • Larsson-Cohn, L., Lp-norms of Hermite polynomials and an extremization problem on Wiener chaos, U. U. D. M. Report 2000:27, Uppsala, 2000.
  • Plancherel, M. and Rotach, W., Sur les valeurs asymptotiques des polynômes d'Hermite Hn(x)=(−1)nex2/2dn(e−x2/2)/dxn, Comment. Math. Helv. 1 (1929), 227–254.
  • Rényi, A., On mixing sequences of sets, Acta Math. Acad. Sci. Hungar. 9 (1958), 215–228.
  • Szegő, G., Orthogonal Polynomials, Amer. Math. Soc., New York, 1939.