Arkiv för Matematik

  • Ark. Mat.
  • Volume 39, Number 2 (2001), 263-282.

Cohomologie L2 sur les revêtements d’une varie’ete’ complexe compacte

Frédéric Campana and Jean-Pierre Demailly

Full-text: Open access

Article information

Source
Ark. Mat., Volume 39, Number 2 (2001), 263-282.

Dates
Received: 4 April 2000
First available in Project Euclid: 31 January 2017

Permanent link to this document
https://projecteuclid.org/euclid.afm/1485898732

Digital Object Identifier
doi:10.1007/BF02384557

Mathematical Reviews number (MathSciNet)
MR1861061

Rights
2001 © Institut Mittag-Leffler

Citation

Campana, Frédéric; Demailly, Jean-Pierre. Cohomologie L 2 sur les revêtements d’une varie’ete’ complexe compacte. Ark. Mat. 39 (2001), no. 2, 263--282. doi:10.1007/BF02384557. https://projecteuclid.org/euclid.afm/1485898732


Export citation

Bibliographie

  • [AG] Andreotti, A. et Grauert, H., Théorèmes de finitude pour la cohomologie des espaces complexes, Bull. Soc. Math. France 90 (1962), 193–259.
  • [AV] Andreotti, A. et Vesentini, E., Carleman estimates for the Laplace-Beltrami equation in complex manifolds, Inst. Hautes Études Sci. Publ. Math 25 (1965), 81–130.
  • [A] Atiyah, M., Elliptic operators, discrete groups and von Neumann algebras, dans Elliptic Operators, Discrete Groups and von Neumann Algebras. Colloque “Analyse et Topologie” en l’honneur de Henri Cartan (Orsay, 1974), Astérisque 32–33, p. 43–72, Soc. Math. France, Paris, 1976.
  • [C] Campana, F., Fundamental group and positivity of cotangent bundles of compact Kähler manifolds, J. Algebraic Geom. 4 (1995), 487–502.
  • [D] Demailly, J.-P.., Estimations L2 pour l’opérateur $\bar \partial $ d’un fibré vectoriel hermitien semi-positif, Ann. Sci. École Norm. Sup. 15 (1982), 457–511.
  • [E1] Eyssidieux, P., Théorie de l’adjonction L2 sur le revêtement universel, Preprint, 1997.
  • [E2] Eyssidieux, P., Systèmes linéaires adjoints L2. Ann. Inst. Fourier (Grenoble) 49 (1999), vi, ix-x, 141–176.
  • [E3] Eyssidieux, P., Invariants de von Neumann des faisceaux analytiques cohérents, Math. Ann. 317 (2000), 527–566.
  • [G] Gromov, M., Kähler hyperbolicity and L2-Hodge theory, J. Differential Geom 33 (1991), 263–291.
  • [H] Hörmander, L., An Introduction to Complex Analysis in Several Variables. 3rd ed., North-Holland Math. Library 7, Elsevier, Amsterdam, 1990.
  • [JZ] Jost, J. et Zuo, K., Vanishing theorems for L2-cohomology on infinite coverings of compact Kähler manifolds and applications in algebraic geometry, Comm. Anal. Geom. 8 (2000), 1–30.
  • [K] Kollár, J., Shafarevitch Maps and Automorphic Forms, Princeton Univ. Press, Princeton, N. J., 1995.
  • [NR] Napier, T. et Ramachandran, M.., The $L^2 \bar \partial $ -method, weak Lefschetz theorems, and the topology of Kähler manifolds, J. Amer. Math. Soc. 11 (1998), 375–396.
  • [O] Ohsawa, T., A reduction theorem for cohomology groups of very strongly q-convex Kähler manifolds, Invent. Math. 63 (1981), 335–354; Invent. Math. 66 (1982) 391–393.
  • [P] Pansu, P., Introduction to L2 Betti numbers, dans Riemannian Geometry (Waterloo, Ont., 1993) (Lovrić, M., Maung, M.-O. et Wang, M. Y.-K., éds) Fields Inst. Monogr. 4, p. 53–86, Amer. Math. Soc., Providence, R. I., 1996.
  • [W] Weil, A., Introduction à l’étude des variétés kählériennes, Hermann, Paris, 1958.