Arkiv för Matematik

  • Ark. Mat.
  • Volume 39, Number 2 (2001), 245-262.

On the Siciak extremal function for real compact convex sets

Len Bos, Jean-Paul Calvi, and Norman Levenberg

Full-text: Open access

Article information

Source
Ark. Mat., Volume 39, Number 2 (2001), 245-262.

Dates
Received: 16 November 1999
First available in Project Euclid: 31 January 2017

Permanent link to this document
https://projecteuclid.org/euclid.afm/1485898731

Digital Object Identifier
doi:10.1007/BF02384556

Mathematical Reviews number (MathSciNet)
MR1861060

Zentralblatt MATH identifier
1028.32015

Rights
2001 © Institut Mittag-Leffler

Citation

Bos, Len; Calvi, Jean-Paul; Levenberg, Norman. On the Siciak extremal function for real compact convex sets. Ark. Mat. 39 (2001), no. 2, 245--262. doi:10.1007/BF02384556. https://projecteuclid.org/euclid.afm/1485898731


Export citation

References

  • Baran, M., Siciak’s extremal function of convex sets in Cn, Ann. Polon. Math. 48 (1988), 275–280.
  • Baran, M., Plurisubharmonic extremal functions and complex foliations for the complement of convex sets in Rn, Michigan Math. J. 39 (1992), 395–404.
  • Baran, M., Complex equilibrium measure and Bernstein type theorems for compact sets in Rn, Proc. Amer. Math. Soc. 123 (1995), 485–494.
  • Bloom, T., Some applications of the Robin function to multivariable approximation theory, J. Approx. Theory 92 (1998), 1–21.
  • Klimek, M., Pluripotential Theory, Clarendon Press, Oxford, 1991.
  • Klimek, M., Metrics associated with extremal plurisubharmonic functions, Proc. Amer. Math. Soc. 123 (1995), 2763–2770.
  • Kroo, A. and Schmidt, D., Some extremal problems for multivariate polynomials on convex bodies, J. Approx. Theory 90 (1997), 415–434.
  • Lundin, M., The extremal plurisubharmonic function for the complement of convex, symmetric subsets of Rn, Michigan Math. J. 32 (1985), 197–201.
  • Pleśniak, W., Sur les conditions polynomiales du type Leja dans Cn, C. R. Acad. Sci. Paris Sér. I Math. 290 (1980), 309–311.
  • Ransford, T., Potential Theory in the Complex Plane, Cambridge Univ. Press, Cambridge, 1995.
  • Siciak, J., Extremal plurisubharmonic functions in Cn, Ann. Polon. Math. 39 (1981), 175–211.