Arkiv för Matematik

  • Ark. Mat.
  • Volume 39, Number 2 (2001), 223-243.

On the uncertainty principle for M. Riesz potentials

Dmitri B. Beliaev and Victor P. Havin

Full-text: Open access


Research supported in part by RFFI, grant N 99-01-00720 and NSERC.

Article information

Ark. Mat., Volume 39, Number 2 (2001), 223-243.

Received: 17 April 2000
First available in Project Euclid: 31 January 2017

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

2001 © Institut Mittag-Leffler


Beliaev, Dmitri B.; Havin, Victor P. On the uncertainty principle for M. Riesz potentials. Ark. Mat. 39 (2001), no. 2, 223--243. doi:10.1007/BF02384555.

Export citation


  • Aleksandrov, A. B. and Kargaev P. P., Hardy classes of functions harmonic in the upper halfspace, Algebra i Analiz 5:2 (1993), 1–73 (Russian). English transl.: St. Petersburg Math. J. 5 (1994), 229–286.
  • Binder, I., A theorem on correction of gradients of harmonic functions, Algebra i Analiz 5:2 (1993), 91–107 (Russian). English transl.: St. Petersburg Math. J. 5 (1994), 301–315.
  • Bourgain, J. and Wolff, T., A remark on gradients of harmonic functions in dimension ≥3, Colloq. Math. 60/61 (1990), 253–260.
  • Goluzina, M. G., On a uniqueness theorem, Vestnik Leningrad. Univ. Mat. Mekh. Astronom. 1987:1 (1987), 109–111, 127 (Russian).
  • Havin, V., The uncertainty principle for one-dimensional Riesz potentials, Doklady Akad. Nauk SSSR 264 (1982), 559–563 (Russian). English transl.: Soviet Math. Dokl. 25 (1982), 694–698.
  • Havin, V. and Jöricke, B., The Uncertainty Principle in Harmonic Analysis, Springer-Verlag, Berlin, 1994.
  • Havin, V. and Maz’ya, V., On solutions of the Cauchy problem for the Laplace equation (uniqueness, normality, approximation), Trudy Moskov. Mat. Obshch. 30 (1974), 61–114 (Russian). English transl.: Trans. Moscow Math. Soc. 30 (1974), 65–117.
  • Jöricke, B. and Havin, V., The uncertainty principle for operators commuting with the shift, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov (LOMI) 113 (1982), 97–134, 265.
  • Kislyakov, S. V., A new correction theorem, Izv. Akad. Nauk SSSR Ser. Mat. 48:2 (1984), 305–330 (Russian). English transl.: Math. USSR-Izv. 24 (1985), 283–306.
  • Riesz, M., Intégrales de Riemann-Liouville et potentiels, Acta Sci. Math. (Szeged) 9 (1938), 1–42.
  • Samko, S. G., Kilbas, A. A. and Marichev, O. I., Integrals and Derivatives of Fractional Order and Some of Their Applications, Nauka i tekhnika, Minsk, 1987.
  • Wolff, T., Counterexamples with harmonic gradients in R3, in Essays on Fourier Analysis in Honor of Elias M. Stein (Princeton, N. J. 1991) (Fefferman, C., Fefferman, R. and Wainger, S., eds.), pp. 321–384, Princeton Univ. Press, Princeton, N. J., 1995.