Arkiv för Matematik

  • Ark. Mat.
  • Volume 38, Number 2 (2000), 319-326.

Schubert filtration for simple quotients of generalized Verma modules

Alexandre Khomenko and Volodymyr Mazorchuk

Full-text: Open access

Note

Alexander von Humboldt fellow at Bielefeld University.

Article information

Source
Ark. Mat., Volume 38, Number 2 (2000), 319-326.

Dates
Received: 20 April 1998
Revised: 29 October 1999
First available in Project Euclid: 31 January 2017

Permanent link to this document
https://projecteuclid.org/euclid.afm/1485898688

Digital Object Identifier
doi:10.1007/BF02384322

Mathematical Reviews number (MathSciNet)
MR1785404

Zentralblatt MATH identifier
1021.17009

Rights
2000 © Institut Mittag-Leffler

Citation

Khomenko, Alexandre; Mazorchuk, Volodymyr. Schubert filtration for simple quotients of generalized Verma modules. Ark. Mat. 38 (2000), no. 2, 319--326. doi:10.1007/BF02384322. https://projecteuclid.org/euclid.afm/1485898688


Export citation

References

  • [A] Andersen, H., Schubert varieties and Demazure character formula, Invent. Math. 5 (1985), 611–618.
  • [De] Demazure, M., Désingularisation des variétés de Schubert généralisées, Ann. Sci. École Norm. Sup. 7 (1974), 53–88.
  • [D] Dixmier, J., Enveloping Algebras, Revised reprint of the 1977 translation, Grad. Stud. Math. 11, Amer. Math. Soc., Providence, R. I., 1996.
  • [FM1] Futorny, V. and Mazorchuk, V., Structure of α-stratified modules for finite-dimensional Lie algebras, I, J. Algebra 183 (1996), 456–482.
  • [FM2] Futorny, V. and Mazorchuk, V., BGG-resolution for α-stratified modules over simply-laced finite-dimensional Lie algebras, J. Math. Kyoto Univ. 38 (1998), 229–240.
  • [H] Humphreys, J., Reflection Groups and Coxeter Groups, Cambridge Univ. Press, Cambridge, 1990.
  • [J] Joseph, A., Quantum Groups and their Primitive Ideals, Springer-Verlag, New York, 1994.
  • [Ma] Mathieu, O., Classification of irreducible weight modules, Ann. Inst. Fourier (Grenoble) 50 (2000), 537–592.
  • [M] Mazorchuk, V., On the structure of an α-stratified generalized Verma module over Lie algebra sl(n, C), Manuscripta Math. 88 (1995), 59–72.
  • [MO] Mazorchuk, V. and Ovsienko, S., Submodule structure of generalized Verma modules induced from generic Gelfand-Zetlin modules, Algebr. Represent. Theory 1 (1998), 3–26.
  • [P] Polo, P., Un critère d'existence d'une filtration de Schubert, C. R. Acad. Sci. Paris Sér. I Math. 307 (1988), 791–794.
  • [Z] Zhelobenko, D., Representations of Reductive Lie Algebras, Nauka, Moscow, 1994 (Russian).