Arkiv för Matematik

  • Ark. Mat.
  • Volume 38, Number 2 (2000), 231-261.

On surfaces in P6 with no trisecant lines

Sandra Rocco and Kristian Ranestad

Full-text: Open access

Abstract

Examples of surfaces in P6 with no trisecant lines are constructed. A partial classification recovering them is given and conjectured to be the complete one.

Dedication

Dedicated to the memory of F. Serrano

Article information

Source
Ark. Mat., Volume 38, Number 2 (2000), 231-261.

Dates
Received: 8 September 1997
Revised: 27 January 2000
First available in Project Euclid: 31 January 2017

Permanent link to this document
https://projecteuclid.org/euclid.afm/1485898685

Digital Object Identifier
doi:10.1007/BF02384319

Mathematical Reviews number (MathSciNet)
MR1785401

Zentralblatt MATH identifier
1035.14011

Rights
2000 © Institut Mittag-Leffler

Citation

Rocco, Sandra; Ranestad, Kristian. On surfaces in P 6 with no trisecant lines. Ark. Mat. 38 (2000), no. 2, 231--261. doi:10.1007/BF02384319. https://projecteuclid.org/euclid.afm/1485898685


Export citation

References

  • Arbarello, E., Cornalba, M., Griffiths, P. and Harris, J., Geometry of Algebraic Curves, Volume I, Springer-Verlag, Berlin-Heidelberg-New York, 1985.
  • Aure, A. B., The smooth surfaces in P4 without apparent triple points, Duke Math. J. 57 (1988), 423–430.
  • Bauer, I., Inner projections of algebraic surfaces: a finiteness result, J. Reine Angew. Math. 460 (1995), 1–13.
  • Bauer, T. and Szemberg, T., Primitive higher order embeddings of Abelian surfaces, Trans. Amer. Math. Soc. 349 (1997), 1675–1683.
  • Braun, R. and Ranestad, K., Conic bundles in projective fourspace, in Algebraic Geometry (Newstead, P. E., ed.), pp. 331–339, Marcel Dekker, New York, 1998.
  • Ciliberto, C., Hilbert function on finite sets of points and the genus of a curve in a projective space, in Space Curves (Ghione, F., Peskine, C. and Sernesi, E., eds.), Lecture Notes in Math. 1266, pp. 24–73, Springer-Verlag, Berlin-Heidelberg, 1987.
  • Di Rocco, S., k-very ample line bundles on Del Pezzo surfaces, Math. Nachr. 179 (1996), 47–56.
  • Ellia, P. and Sacchiero, G., Smooth surfaces of P4 ruled in conics, in Algebraic Geometry (Newstead, P. E., ed.), pp. 49–62, Marcel Dekker, New York, 1998.
  • Harris, J., Curves in Projective Space, Presses de l'Université de Montréal, Montreal, Que., 1982.
  • Hartshorne, R., Algebraic Geometry, Springer-Verlag, New York, 1977.
  • Hulek, K., Katz, S. and Schreyer, F.-O., Cremona transformations and syzygies, Math. Z. 209 (1992), 419–443.
  • Le Barz, P., Formules pour les trisecantes des surfaces algebriques, Enseign. Math. 33 (1987), 1–66.
  • Livorni, E. L., On the existence of some surfaces, in Algebraic Geometry (Sommese, A. J., Biancofiore, A. and Livorni, E. L., eds.), Lecture Notes in Math. 1417, pp. 155–179, Springer-Verlag, Berlin-Heidelberg, 1990.
  • Mukai, S., Curves, K3 surfaces and Fano 3-folds of genus g≤10, in Algebraic Geometry and Commutative Algebra. Vol. I (Hijikata, H., Hironaka, H., Maruyama, M., Matsumura, H., Miyanishi, M., Oda, T. and Ueno, K., eds.), Kinokuniya, Tokyo, 1988.
  • Popescu, S. and Ranestad, K., Surfaces of degree 10 in the projective fourspace via linear systems and linkage, J. Algebraic Geom. 5 (1996), 13–76.
  • Reider, I., Vector bundles of rank 2 and linear systems on algebraic surfaces, Ann. of Math. 127 (1988), 309–316.
  • Serrano, F., Divisors of bielleptic surfaces and embeddings in P4, Math. Z. 203 (1990), 527–533.
  • Sommese, A. J. and Van de Ven, A., On the adjunction mapping, Math. Ann. 278 (1987), 593–603.