Arkiv för Matematik

  • Ark. Mat.
  • Volume 38, Number 1 (2000), 201-208.

The pluripolar hull of {w=e−1/z}

Jan Wiegerinck

Full-text: Open access

Abstract

In this paper we show that the pluripolar hull of E={(z, ω)∈C2:ω=e−1/z, z≠0} is equal to E. This implies that E is plurithin at 0, which answers a question of Sadullaev. The result remains valid if e−1/z is replaced by certain other holomorphic functions with an essential singularity at 0.

Article information

Source
Ark. Mat., Volume 38, Number 1 (2000), 201-208.

Dates
Received: 28 September 1998
First available in Project Euclid: 31 January 2017

Permanent link to this document
https://projecteuclid.org/euclid.afm/1485898674

Digital Object Identifier
doi:10.1007/BF02384498

Mathematical Reviews number (MathSciNet)
MR1749366

Zentralblatt MATH identifier
1021.32013

Rights
2000 © Institut Mittag-Leffler

Citation

Wiegerinck, Jan. The pluripolar hull of { w = e −1/ z }. Ark. Mat. 38 (2000), no. 1, 201--208. doi:10.1007/BF02384498. https://projecteuclid.org/euclid.afm/1485898674


Export citation

References.

  • Bedford, E., Survey of pluripotential theory, in Several Complex Variables, Proceedings of the Mittag-Leffler Institute 1987–1988 (Fornæss, J. E., ed.), Math. Notes 38, Princeton Univ. Press, Princeton, N. J., 1993.
  • Lárusson, F., and Sigurdsson, R., Plurisubharmonic functions and analytic discs on manifolds, J. Reine Angew. Math. 501 (1998), 1–39.
  • Levenberg, N. and Poletsky, E. A., Pluripolar hulls, Michigan Math. J. 46 (1999), 151–162.
  • Poletsky, E. A., Holomorphic currents, Indiana Univ. Math J. 42 (1993), 85–144.
  • Sadullaev, A., Plurisubharmonic measures and capacities on complex manifolds, Uspekhi Mat. Nauk 36 (1981), 53–105. English transls: Russian Math. Surveys 36 (1981), 61–119.
  • Zeriahi, A., Ensembles pluripolaires exceptionnelles pour la croissance partielle des fonctions holomorphes, Ann. Polon. Math. 50 (1989), 81–91.