Arkiv för Matematik

  • Ark. Mat.
  • Volume 38, Number 1 (2000), 97-110.

Indices, characteristic numbers and essential commutants of Toeplitz operators

Kunyu Guo

Full-text: Open access

Abstract

For an essentially normal operator T, it is shown that there exists a unilateral shift of multiplicity m in C*(T) if and only if γ(T)≠0 and γ(T)/m. As application, we prove that the essential commutant of a unilateral shift and that of a bilateral shift are not isomorphic as C*-algebras. Finally, we construct a natural C*-algebra ε + ε* on the Bergman space L ${}_{a}^{2}$ (Bn), and show that its essential commutant is generated by Toeplitz operators with symmetric continuous symbols and all compact operators.

Note

Supported by NSFC and Laboratory of Mathematics for Nonlinear Science at Fudan University.

Article information

Source
Ark. Mat., Volume 38, Number 1 (2000), 97-110.

Dates
Received: 30 June 1998
Revised: 15 December 1998
First available in Project Euclid: 31 January 2017

Permanent link to this document
https://projecteuclid.org/euclid.afm/1485898669

Digital Object Identifier
doi:10.1007/BF02384493

Mathematical Reviews number (MathSciNet)
MR1749361

Zentralblatt MATH identifier
1021.47018

Rights
2000 © Institut Mittag-Leffer

Citation

Guo, Kunyu. Indices, characteristic numbers and essential commutants of Toeplitz operators. Ark. Mat. 38 (2000), no. 1, 97--110. doi:10.1007/BF02384493. https://projecteuclid.org/euclid.afm/1485898669


Export citation

References

  • Arveson, W., Notes on the extensions of C*-algebras, Duke Math. J. 44 (1977), 329–354.
  • Barria, J. and Halmos, P. R., Asymptotic Toeplitz operators, Trans. Amer. Math. Soc. 273 (1982), 621–630.
  • Bekolle, D., Berger, C. A., Coburn, L. A. and Zhu, K. H., BMO in the Bergman metric on bounded symmetric domains, J. Funct. Anal. 93 (1990), 921–953.
  • Brown, L. G., Douglas, R. G. and Fillmore, P. A., Unitary equivalence modulo the compact operators and extensions of C*-algebras, in Proceedings of a Conference on Operator Theory (Fillmore, P. A., ed.), Lecture Notes in Math. 345, pp. 58–128, Springer-Verlag, Berlin-Heidelberg, 1973.
  • Coburn, L. A., Singular integral operators and Toeplitz operators on odd spheres, Indiana Univ. Math. J. 23 (1973/74), 433–439.
  • Douglas, R. G., Banach Algebra Techniques in Operator Theory, Academic Press, New York, 1972.
  • Englis, M., Density of algebras generated by Toeplitz operators on Bergman spaces, Ark. Mat. 30 (1992), 227–240.
  • Englis, M., Toeplitz operators on Cartan domains essentially commute with a bilateral shift, Proc. Amer. Math. Soc. 117 (1993), 365–368.
  • Gohberg, I. C. and Krein, M. G., Systems of integral equations on a half-line with kernels depending on the difference of arguments, Uspekhi Mat. Nauk 13:2 (1958), 3–72 (Russian). English transl.: Amer. Math. Soc. Transl. 14 (1960), 217–287.
  • Liu, J., Zhang, Y. and Guo, K., A new C*-algebra and its essential commutant, Chinese Sci. Bull. 44 (1999), 204–207.
  • McDonald, G. Fredholm properties of a class of Toeplitz operators on the ball, Indiana Univ. Math. J. 26 (1977), 567–576.
  • Power, S. C., C*-modules and an odd-even decomposition for C*-algebras, Bull. London Math. Soc. 8 (1976), 268–272.
  • Salinas, N., The ∂-formalism and the C*-algebra of the Bergman n-tuple, J. Operator Theory 22 (1989), 325–343.
  • Zhu, K. H., Duality and Hankel operators on the Bergman spaces of bounded symmetric domains, J. Funct. Anal. 81 (1988), 260–278.