Arkiv för Matematik

  • Ark. Mat.
  • Volume 37, Number 2 (1999), 395-407.

Existence of the spectral gap for elliptic operators

Feng-Yu Wang

Full-text: Open access

Abstract

LetM be a connected, noncompact, complete Riemannian manifold, consider the operator L=Δ+∇V for some V∈C2(M) with exp[V] integrable with respect to the Riemannian volume element. This paper studies the existence of the spectral gap of L. As a consequence of the main result, let ϱ be the distance function from a point o, then the spectral gap exists provided limϱ→∞ sup Lϱ<0 while the spectral gap does not exist if o is a pole and limϱ→∞ inf Lϱ≥0. Moreover, the elliptic operators on Rd are also studied.

Note

Research supported in part by AvH Foundation, NSFC(19631060), Fok Ying-Tung Educational Foundation and Scientific Research Foundation for Returned Overseas Chinese Scholars.

Article information

Source
Ark. Mat., Volume 37, Number 2 (1999), 395-407.

Dates
Received: 26 November 1997
Revised: 1 April 1998
First available in Project Euclid: 31 January 2017

Permanent link to this document
https://projecteuclid.org/euclid.afm/1485898643

Digital Object Identifier
doi:10.1007/BF02412223

Mathematical Reviews number (MathSciNet)
MR1714760

Zentralblatt MATH identifier
1075.35540

Rights
1999 © Institut Mittag-Leffler

Citation

Wang, Feng-Yu. Existence of the spectral gap for elliptic operators. Ark. Mat. 37 (1999), no. 2, 395--407. doi:10.1007/BF02412223. https://projecteuclid.org/euclid.afm/1485898643


Export citation

References

  • Cheeger, J., A lower bound for the smallest eigenvalue of the Laplacian, in Problems in Analysis (Gunning, R. C., ed.), pp. 195–199, Princeton Univ. Press, Princeton, N. J., 1970.
  • Chen, M. F. and Wang, F.-Y., Estimation of the first eigenvalue of the second order elliptic operators, J. Funct. Anal. 131 (1995), 345–363.
  • Chen, M. F. and Wang, F.-Y., General formula for lower bound of the first eigenvalue on Riemannian manifolds, Sci. China Ser. A 40 (1997), 384–394.
  • Chen, M. F. and Wang, F.-Y., Estimation of spectral gap for elliptic operators, Trans. Amer. Math. Soc. 349 (1997), 1239–1267.
  • Donnely, H. and Li, P., Pure point spectrum and negative curvature for noncompact manifolds, Duke Math. J. 46 (1979), 497–503.
  • Kasue, A., On a lower bound for the first eigenvalue of the Laplace operator on a Riemannian manifold, Ann. Sci. École Norm. Sup 17 (1984), 31–44.
  • Kendall, W. S., The radial part of Brownian motion on a manifold: a semimartingale property, Ann. Probab. 15 (1987), 1491–1500.
  • Kumura, H., On the essential spectrum of the Laplacian on complete manifolds, J. Math. Soc. Japan 49 (1997), 1–14.
  • Ledoux, M.; Concentration of Measure and Logarithmic Sobolev Inequalities. to appear in Séminaire de Probabilités XXXIV, Lecture Notes in Math., Springer-Verlag, Berlin-Heidelberg.
  • Sturm, K. Th., Analysis on local Dirichlet spaces I, reccurrence, conservativeness, Lp-Liouville properties, J. Reine Angew. Math. 456 (1994), 173–196.
  • Thomas, L. E., Bound on the mass gap for finite volume stochastic Ising models at low temperature, Comm. Math. Phys. 126 (1989), 1–11.
  • Wang, F.-Y., Spectral gap for diffusion processes on noncompact manifolds, Chinese Sci. Bull. 40 (1995), 1145–1149.
  • Wang, F.-Y., Logarithmic Sobolev inequalities on noncompact Riemannian manifolds, Probab. Theor. Relat. Fields 109 (1997), 417–424.
  • Wang, F.-Y., Logarithmic Sobolev inequalities: Conditions and counterexamples, Preprint, 1997.