Arkiv för Matematik

Global moduli for contacts

Enrique Arrondo, Ignacio Sols, and Robert Speiser

Full-text: Open access


Research by the first two authors was supported by CICYT grants PB90-0643 and PB93-0440-C03-01.


Research at MSRI, fall 1992, partly supported by NSF grant DMS 9022140.

Article information

Ark. Mat., Volume 35, Number 1 (1997), 1-57.

Received: 16 October 1995
First available in Project Euclid: 31 January 2017

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

1997 © Institut Mittag-Leffler


Arrondo, Enrique; Sols, Ignacio; Speiser, Robert. Global moduli for contacts. Ark. Mat. 35 (1997), no. 1, 1--57. doi:10.1007/BF02559592.

Export citation


  • [CK1] Colley, S. J. and Kennedy, G., A higher-oder contact formula for plane curves, Comm. Algebra 19 (1991), 479–508.
  • [CK2] Colley, S. J. and Kennedy, G., Triple and quadruple contact of plane curves, in Enumerative Algebraic Geometry (Kleiman, S. L. and Thorup, A., eds.), Contemp. Math., 123, pp. 31–59, Amer. Math. Soc., Providence, R. I., 1991.
  • [C] Collino, A., Evidence for a conjecture of Ellingsrud and Strømme on the Chow ring of HilbdP2, Illinois J. Math., 32, (1988), 171–210.
  • [D3] Dieudonné, J., Éléments d'analyse III, Gauthier-Villars Paris, 1970 (French). English transl.: Treatise on Analysis III, Pure and Appl. Math. 10-III, Academic Press, New York-London, 1972.
  • [D4] Dieudonné, J., Éléments d'analyse IV, Gauthier-Villars, Paris, 1971 (French). English transl.: Treatise on Analysis IV, Pure and Appl. Math. 10-IV, Academic Press, New York-London, 1974.
  • [DuV] Du Val, P., Neighbourhood manifolds and their parametrization, Philos. Trans. Roy. Soc. London Ser. A 254, (1961/1962), 441–520.
  • [F] Fulton, W., Intersection Theory, Ergebnisse der Mathematik und ihrer Grenzgebiete (3)2, Springer-Verlag, Berlin-New York, 1984.
  • [FM] Fulton, W. and MacPherson, R., A compactification of configuration spaces, Ann. of Math. 139 (1994), 183–225.
  • [G] Gamkrelidze, R. V. (Ed.), Geometry I, Encyclopaedia of Mathematical Sciences 28, Springer-Verlag, Berlin-Heidelberg-New York, 1991.
  • [Gh] Gherardelli, G., Sul modello minimo della varietà degli elementi defferenziali del 20 ordine del piano projettivo, Atti Accad. Italia. Rend. Cl. Sci. Fis. Mat. Nat. (7) 2 (1941), 821–828.
  • [Gö] Göttsche, L., Hilbertschemata nulldimensionaler Unterschemata glatter Varietäten, Bonner Math. Schriften 243, Univ. Bonn, Bonn, 1991.
  • [GH] Griffiths, P. and Harris, J., Algebraic geometry and local differential geometry, Ann. Sci. École Norm. Sup. (4)12 (1979), 355–432.
  • [GD] Grothendieck, A. and Dieudonné, J., Eléments de géometrie algébrique IV. Étude locale des schémas et des morphismes de schémas IV, Inst. Hautes Études Sci. Publ. Math. 32, 1967.
  • [HT] Harris, J. and Tu, L., On symmetric and skew-symmetric determinantal varieties, Topology 23 (1984), 71–84.
  • [H] Hartshorne, R., Algebraic Geometry, Graduate Texts in Math. 52, Springer-Verlag, New York-Heidelberg, 1977.
  • [KN] Kobayashi, S. and Nomizu, K., Foundations of Differential Geometry II, Wiley, New York-London, 1969.
  • [LS] Laksov, D. and Speiser, R., Local and global structure of effective and cuspidal loci on Grassmannians, In preparation.
  • [L] Longo, C., Gli elementi differenziali del 20 ordine di Sr, Rend. Mat. e Appl. (5)13 (1955), 335–372.
  • [M] Martinelli, E., Sulle varietà delle facette ϕ-dimensionali de SrAtti. Accad. Italia. Mem. Cl. Sci. Fis. Mat. Nat. 12 (1942), 917–943.
  • [RS1] Roberts, J. and Speiser, R., Enumerative geometry of triangles I, Comm. Algebra 12 (1984), 1213–1256.
  • [RS2] Roberts, J. and Speiser, R., Enumerative geometry of triangles II, Comm. Algebra 14 (1986), 155–191.
  • [RS3] Roberts, J. and Speiser, R., Enumerative geometry of triangles III, Comm. Algebra 15 (1987), 1929–1966.
  • [R1] Rosselló, F., The Chow ring of Hilb3P3, in Enumerative Geometry, (Sitges 1987) (Xambó-Descamps, S., ed.), Lecture Notes in Math., 1436, pp. 225–255, Springer-Verlag, Berlin-Heidelberg, 1990.
  • [R2] Rosselló, F., Triple contact formulas in P3, in Enumerative Algebraic Geometry (Kleiman, S. L. and Thorup, A., eds.), Contemp. Math. 123, pp. 223–246, Amer. Math. Soc., Providence, R. I., 1991.
  • [Sch] Schubert, H., Anzahlgeometrische Behandlung des Dreiecks, Math. Ann. 17 (1880), 153–212.
  • [Se1] Semple, J., The triangle as a geometric variable, Mathematika 1 (1954), 80–88.
  • [Se2] Semple, J., Some investigations in the geometry of curve and surface elements, Proc. London Math. Soc. (3)4 (1954), 24–49.
  • [S1] Speiser, R., Enumerating contacts, in Algebraic Geometry, Bowdoin 1985 (Bloch, S. J., ed.), Proc. Sympos. Pure Math. 46:2, pp. 401–418, Amer. Math. Soc., Providence, R. I., 1987.
  • [S2] Speiser, R., Derived triangles and differential systems, in Projective Geometry with Applications (Ballico, E., ed.), Lecture Notes in Pure and Appl. Math. 166, pp. 97–109, Dekker, New York, 1994.