Arkiv för Matematik

  • Ark. Mat.
  • Volume 34, Number 2 (1996), 327-334.

Relative vanishing theorems in characteristic p

Tohru Nakashima

Full-text: Open access

Article information

Source
Ark. Mat., Volume 34, Number 2 (1996), 327-334.

Dates
Received: 5 September 1994
First available in Project Euclid: 31 January 2017

Permanent link to this document
https://projecteuclid.org/euclid.afm/1485898517

Digital Object Identifier
doi:10.1007/BF02559550

Mathematical Reviews number (MathSciNet)
MR1416670

Zentralblatt MATH identifier
0876.14013

Rights
1996 © Institut Mittag-Leffler

Citation

Nakashima, Tohru. Relative vanishing theorems in characteristic p. Ark. Mat. 34 (1996), no. 2, 327--334. doi:10.1007/BF02559550. https://projecteuclid.org/euclid.afm/1485898517


Export citation

References

  • [BK1] Bauer, I. and Kosarew, S., On the Hodge spectral sequences for some classes of non-complete algebraic manifolds, Math. Ann. 284 (1989), 577–593.
  • [BK2] Bauer, I. and Kosarew, S., Some aspects of Hodge theory on noncomplete algebraic manifolds, in Prospects in Complex Geometry (Noguchi, J. and Ohsawa, T., eds), pp. 281–316, Lecture Notes in Math. 1468, Springer-Verlag, Berlin-Heidelberg, 1991.
  • [DI] Deligne, P. and Illusie, L., Relèvement modulo p2 et décomposition du complexe de de Rham, Invent. Math. 89 (1987), 247–270.
  • [H] Hartshorne, R., Ample vector bundles, Inst. Hautes Études Sci. Publ. Math. 29 (1966), 63–94.
  • [I] Illusie, L., Reduction semi-stable et décomposition de complexe de de Rham à coefficients, Duke. Math. J. 60 (1990), 139–185.
  • [K] Kleiman, S., Ample vector bundles on algebraic surfaces, Proc. Amer. Math. Soc. 21 (1969), 673–676.