Arkiv för Matematik

  • Ark. Mat.
  • Volume 28, Number 1-2 (1990), 183-192.

Hankel operators between weighted Bergman spaces in the ball

Robert Wallstén

Full-text: Open access

Article information

Ark. Mat., Volume 28, Number 1-2 (1990), 183-192.

Received: 4 April 1989
First available in Project Euclid: 31 January 2017

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

1990 © Institut Mittag-Leffler


Wallstén, Robert. Hankel operators between weighted Bergman spaces in the ball. Ark. Mat. 28 (1990), no. 1-2, 183--192. doi:10.1007/BF02387374.

Export citation


  • Ahlmann, M., The trace ideal criterion for Hankel operators on the weighted Bergman space A2, αin the unit ball ofCn, Technical report, Lund, 1984.
  • Beatrous, F. and Burbea, J., Sobolev spaces of holomorphic functions in the ball, Pitman Research Notes in Math, Pitman, London, to appear.
  • Coifman, R. R. and Rochberg, R., Representation theorems for holomorphic and harmonic functions in Lp, Asterisque 77, 11–66.
  • Erdélyi, A. et al., Higher transcendental functions, Vol. 1, Mc-Graw-Hill, New York—Toronto—London, 1955.
  • Janson, S., Hankel operators between weighted Bergman spaces, Ark. Mat. 26 (1988), 205–219.
  • Janson, S., Peetre, J. and Rochberg, R., Hankel forms and the Fock space, Revista Mat. Ibero-Amer. 3 (1987), 61–138.
  • Peetre, J., New thoughts on Besov spaces, Duke Univ. Math. Ser. 1, Durham, 1976.
  • Rudin, W., Function theory in the unit ball ofCn, Springer, New York—Heidelberg—Berlin, 1980.
  • Semmes, S., Trace idea criteria for Hankel operators, and applications to Besov spaces, Integral Equations Operator Theory 7 (1984), 241–281.
  • Triebel, H., Theory of function spaces, Birkhäuser, Basel—Boston—Stuttgart, 1983.