Arkiv för Matematik

  • Ark. Mat.
  • Volume 26, Number 1-2 (1988), 231-263.

The geometry of complete linear maps

Dan Laksov

Full-text: Open access

Article information

Source
Ark. Mat., Volume 26, Number 1-2 (1988), 231-263.

Dates
Received: 15 December 1986
First available in Project Euclid: 31 January 2017

Permanent link to this document
https://projecteuclid.org/euclid.afm/1485897951

Digital Object Identifier
doi:10.1007/BF02386122

Mathematical Reviews number (MathSciNet)
MR1050107

Zentralblatt MATH identifier
0681.14034

Rights
1988 © Institut Mittag-Leffler

Citation

Laksov, Dan. The geometry of complete linear maps. Ark. Mat. 26 (1988), no. 1-2, 231--263. doi:10.1007/BF02386122. https://projecteuclid.org/euclid.afm/1485897951


Export citation

References

  • Alguneid, A. R., Complete quadric primals in four-dimensional space. Proc. Math. Phys. Soc. Egypt. 4 (1952), 93–104.
  • De Concini, C. and Procesi, C., Complete symmetric varieties. Invariant theory Proceedings Montecatini 1982, Springer Lecture Notes 996, 1983, 1–44.
  • Demazure, M., Limites de groupes orthogonaux ou symplictiques. Preprint 1980.
  • Finat, J. A., A combinatorial presentation of the variety of complete quadrics. Preprint 1985.
  • Kleiman, S. L., Chasle’s enumerative theory of conics: A historical introduction. MAA Studies in mathematics, vol. 20, ed. A Seidenberg (1980), 117–138.
  • Kleiman, S. L., Tangency and duality. Kjöbenhavns univ. Preprint series no. 11 (1985).
  • Kleiman, S. L. and Thorup, A., Complete bilinear forms. Manuscript 1985.
  • Laksov, D., Notes on the evolution of complete correlations. Enumerative and classical algebraic geometry, Proceedings Nice 81. Birkhauser Progress in Math. 24 (1982), 107–132.
  • Laksov, D., Completed geometrical objects. Manuscript 1985.
  • Semple, J. G., On complete quadrics (I). Journ. London Math. Soc. 23 (1948), 258–267.
  • Semple, J. G., The variety whose points represent complete collineations of Sr on S′r. Rend. di Mat. Univ. Roma 10 (1951), 201–208.
  • Semple, J. G., On complete quadrics (II). Journ. London., Math. Soc. 27 (1952), 280–287.
  • Severi, F., Sui fondamenti della geometria numerativa e sulla teoria delle caratteristiche. Atti del R. Inst. Veneto 75 (1916), 1122–1162.
  • Severi, F., I fondamenti della geometria numerativa. Ann. di Mat. 19 (1940), 151–242.
  • Tyrrell, J. A., Complete quadrics and collineations in Sr. Mathematica 3 (1956), 69–79.
  • Uzava, T., Equivariant compactifications of algebraic symmetric spaces. Preprint 1985.
  • Vainsencher, I., Schubert calculus for complete quadrics. Enumerative and classical algebraic geometry, Nice 1981. Birkhauser, Progr, Math. 24 (1982), 199–235.
  • Vainsencher, I., Complete collineations and blowing up determinantal ideals. Math. Ann, 267 (1984), 417–432.
  • Van der Waerden, B. L., Z.A.G. XV. Lösung des Charakteristikenproblems für Kegelschnitte. Math. Ann. 115 (1938), 645–655.
  • Zeuthen, H. G., Géométrie énumérative. Encyclopedie des sciences mathématiques. Teubner. Leibzig, 1915.