Arkiv för Matematik

  • Ark. Mat.
  • Volume 23, Number 1-2 (1985), 217-240.

Adjoint boundary value problems for the biharmonic equation on C1 domains in the plane

Jonathan Cohen and John Gosselin

Full-text: Open access

Note

Supported by a Faculty Development Award from The University of Tennessee.

Article information

Source
Ark. Mat., Volume 23, Number 1-2 (1985), 217-240.

Dates
Received: 9 January 1984
Revised: 1 November 1984
First available in Project Euclid: 31 January 2017

Permanent link to this document
https://projecteuclid.org/euclid.afm/1485897455

Digital Object Identifier
doi:10.1007/BF02384427

Mathematical Reviews number (MathSciNet)
MR827344

Zentralblatt MATH identifier
0602.35028

Rights
1985 © Institut Mittag-Leffler

Citation

Cohen, Jonathan; Gosselin, John. Adjoint boundary value problems for the biharmonic equation on C 1 domains in the plane. Ark. Mat. 23 (1985), no. 1-2, 217--240. doi:10.1007/BF02384427. https://projecteuclid.org/euclid.afm/1485897455


Export citation

References

  • Agmon, S., Multiple layer potentials and the Dirichlet problem for higher order elliptic equations in the plane, Comm. Pure. Appl. Math. 10 (1957), 179–239.
  • Calderón, A. P., Cauchy integrals on Lipschitz curves and related operators, Proc. Nat. Acad. Sci. U.S.A. 74 (1977), 1324–1327.
  • Cohen, J. and Gosselin, J., The Dirichlet problem for the harmonic equation in a bounded C1 domain in the plane, Indiana Univ. Math. J. 32 (1983), 635–685.
  • Cohen, J. and Gosselin, J., Stress potentials on C1 domains, (preprint).
  • Coifman, R. R., McIntosh, A. and Meyer, Y., L'intégral de Cauchy définit un opérateur borné sur L2 pour les courbes Lipschitziennes, Ann. of Math. 116 (1982), 361–387.
  • Fabes, E., Jodeit, M. and Rivière, N., Potential techniques for boundary value problems on C1 domains, Acta Math. 141 (1978), 165–186.
  • Fabes, E. and Kenig, C., On the Hardy space H1 of a C1 domain, Ark. Mat. 19 (1981), 1–22.
  • Folland, G., Introduction to Partial Differential Equations, Princetcn University Press, Mathematical Notes, #17, 1976.
  • Muskhelishvili, N. I., Some Basic Problems of the Mathematical Theory of Elasticity, P. Noordhoff Ltd., Groningen -The Netherlands, 1963.
  • Verchota, G., Layer potentials and boundary value problems for Laplace's equation on Lipschitz domains, Ph. D. thesis, University of Minnesota, 1982.