Arkiv för Matematik

  • Ark. Mat.
  • Volume 21, Number 1-2 (1983), 111-125.

Basis properties of Hardy spaces

Per Sjölin and Jan-Olov Strömberg

Full-text: Open access

Article information

Source
Ark. Mat., Volume 21, Number 1-2 (1983), 111-125.

Dates
Received: 24 August 1981
First available in Project Euclid: 31 January 2017

Permanent link to this document
https://projecteuclid.org/euclid.afm/1485897008

Digital Object Identifier
doi:10.1007/BF02384303

Mathematical Reviews number (MathSciNet)
MR706642

Zentralblatt MATH identifier
0549.41014

Rights
1983 © Institut Mittag Leffler

Citation

Sjölin, Per; Strömberg, Jan-Olov. Basis properties of Hardy spaces. Ark. Mat. 21 (1983), no. 1-2, 111--125. doi:10.1007/BF02384303. https://projecteuclid.org/euclid.afm/1485897008


Export citation

References

  • Bockariev, S. V., Existence of basis in the space of analytic functions in the disc and some properties of the Franklin system. Mat. Sbornik. 95 (1974), 3–18 (in Russian).
  • Calderón, A. P. and Torchinsky, A., Parabolic maximal functions associated with a distribution. Adv. Math. 16 (1975), 1–64.
  • Carleson, L., An explicit unconditional basis in H1. Institut Mittag. Leffler, Report No. 2, 1980.
  • Ciesielski, Z., Equivalence, unconditionality and convergence a.e. of the spline bases in Lp spaces. Approximation theory, Banach Center Publications, vol. 4, 55–68.
  • Ciesielski, Z., The Franklin orthogonal system as unconditional basis in Re H1 and VMO. Preprint 1980.
  • Ciesielski, Z. and Domsta, J., Estimates for the spline orthonormal functions and for their derivatives. Studia Math. 44 (1972), 315–320.
  • Ciesielski, Z., Simon, P. and Sjölin, P., Equivalence of Haar and Franklin bases in Lp spaces. Studia Math. 60 (1976), 195–211.
  • Maurey, B., Isomorphismes entre espaces H1. Acta Math. 145 (1980), 79–120.
  • Schipp, F. and Simon, P., Investigation of Haar and Franklin series in Hardy spaces. Analysis Math. 8 (1982), 47–56.
  • Sjögren, P., Lectures on atomic Hp space theory in Rn. Preprint series, Dep. of Math., Umeå Univ., No. 5, 1981.
  • Wojtaszczyk, P., The Franklin system is an unconditional basis in H1. Ark. Mat. 20 (1980), 293–300.
  • Zygmund, A., Trigonometric series, vol. 1, Cambridge Univ. Press 1959.