Arkiv för Matematik

  • Ark. Mat.
  • Volume 18, Number 1-2 (1980), 199-206.

Capacities and extremal plurisubharmonic functions on subset of Cn

Urban Cegrell

Full-text: Open access

Note

Supported by the Swedish Natural Science Research Council contract no. 3435-100.

Article information

Source
Ark. Mat., Volume 18, Number 1-2 (1980), 199-206.

Dates
Received: 22 August 1979
First available in Project Euclid: 31 January 2017

Permanent link to this document
https://projecteuclid.org/euclid.afm/1485896617

Digital Object Identifier
doi:10.1007/BF02384690

Mathematical Reviews number (MathSciNet)
MR608336

Zentralblatt MATH identifier
0451.32011

Rights
1980 © Institut Mittag-Leffler

Citation

Cegrell, Urban. Capacities and extremal plurisubharmonic functions on subset of C n. Ark. Mat. 18 (1980), no. 1-2, 199--206. doi:10.1007/BF02384690. https://projecteuclid.org/euclid.afm/1485896617


Export citation

References

  • Anger, B. and Lembecke, J., Hahn—Banach type theorems for hypolinear functionals. Math. Ann. 209 (1974), 127–151.
  • Bedford, E., Extremal plurisubharmonic functions and pluripolar sets inC2. Preprint 1979.
  • Berg, G., Bounded holomorphic functions of several complex variables. U.U.D.M. 1979: 3.
  • Cegrell, U., On product capacities with application to complex analysis Preprint 1979.
  • Cegrell, U., Delta-plurisubharmonic functions. Math. Scand. 43 (1978), 343–352.
  • Choquet, G., Lectures on analysis. W. A. Benjamin, New York and Amsterdam 1969.
  • Gamelin, T. W. and Sibony, N., Subharmonicity for uniform algebras. Preprint 1978.
  • Josefson, B., On the equivalence between locally polar and globally polar sets for plurisubharmonic functions in Cn. Ark. Mat. 16 (1978), 109–115.
  • Lelong, P., Fonctions entières de type exponentiel dans Cn, Ann. Inst. Fourier 16 (1966), 269–318.
  • Siciak, J.Extremal plurisubharmonic functions inCn. Proc of the first Finnish—Polish Summerschool in complex analysis at Podlesice, Lodz 1977.
  • Stehlé, J.-L., Fonctions plurisousharmoniques et convexité holomorphe de certains fibrés analytiques. Lecture Notes in Math. 474. Springer Verlag (1975), 155–179.
  • Zaharjuta, V. P., Separately analytic functions, generalizations of Hartogs’ theorem and envelopes of holomorphy. Mat. Sbornik 101 (1976)=Math. USSR Sbornik 30 (1976), 51–67.
  • Zaharjuta, V. P., Extremal plurisubharmonic functions, Hilbert scales and isomorphism of spaces of analytic functions of several variables (in Russian). Theory of functions, Functional analysis and their applications 19 (1974), 133–157.