Arkiv för Matematik

  • Ark. Mat.
  • Volume 18, Number 1-2 (1980), 19-47.

Gauss’s Theorem and the self-adjointness of Schrödinger operators

Hubert Kalf

Full-text: Open access

Article information

Source
Ark. Mat., Volume 18, Number 1-2 (1980), 19-47.

Dates
Received: 23 March 1979
First available in Project Euclid: 31 January 2017

Permanent link to this document
https://projecteuclid.org/euclid.afm/1485896606

Digital Object Identifier
doi:10.1007/BF02384679

Mathematical Reviews number (MathSciNet)
MR608325

Zentralblatt MATH identifier
0458.35025

Rights
1980 © Institut Mittag-Leffler

Citation

Kalf, Hubert. Gauss’s Theorem and the self-adjointness of Schrödinger operators. Ark. Mat. 18 (1980), no. 1-2, 19--47. doi:10.1007/BF02384679. https://projecteuclid.org/euclid.afm/1485896606


Export citation

References

  • Agmon, S., Lectures on Elliptic Boundary Value Problems. New York: Van Nostrand 1965.
  • Bagby, T., and Ziemer, W. P., Pointwise Differentiability and Absolute Continuity. Trans. Amer. Math. Soc. 191, 129–148 (1974).
  • Baider, A., Weak and Strong Extensions of Ordinary Differential Operators. J. Math. Anal. Appl. 62, 247–256 (1978).
  • Carleman, T., Sur les équations intégrales singulières à noyau réel et symétrique. Uppsala universitets årsskrift 1923.
  • Carleman, T., Sur la théorie mathématique de Schroedinger. Arkiv för mat., astr. och fysik 24B, N: o 11 (1934) (=Edition complète des articles de Torsten Carleman: Malmö 1960).
  • Combescure-Moulin, M., and Ginibre, J., Essential Self-Adjointness of Many Particle Schrödinger Hamiltonians with Singular Two-Body Potentials. Ann. Inst. H. Poincaré Sect.A23, 211–234 (1975).
  • Devinatz, A., Essential Self-Adjointness of Schrödinger-Type Operators. J. Functional Anal. 25, 58–69 (1977).
  • Devinatz, A., Selfadjointness of Second Order Degenerate-Elliptic Operators. Indiana University Math. J. 27, 255–266 (1978).
  • Devinatz, A., Selfadjointness of Second Order Elliptic and Degenerate Elliptic Differential Operators. Preprint, Northwestern University, Evanston, Illinois, 1977.
  • Devinatz, A., On an Inequality of Tosio Kato for Degenerate-Elliptic Operators. J. Functional Anal. 32, 312–335 (1979).
  • Eastham, M. S. P., Evans, W. D., and McLeod, J. B., The Essential Self-Adjointness of Schrödinger-Type Operators. Arch. Rational Mech. Anal. 60, 185–204 (1976).
  • Federer, H., Geometric Measure Theory, Berlin: Springer 1969.
  • Frehse, J., Essential Selfadjointness of Singular Elliptic Operators. Bol. Soc. Brasil. Mat. 8, 87–107 (1977). (Also as Preprint No. 116, Sonderforschungsbereich 72 Universität Bonn 1977.)
  • Friedrichs, K., Spektraltheorie halbbeschränkter Operatoren und Anwendung auf die Spektralzerlegung von Differentialoperatoren I, II. Math. Ann. 109, 465–487, 685–713 (1933/34) Berichtigung, ibid. Math. Ann. 110, 777–779 (1934/35).
  • Friedrichs, K., Über die ausgezeichnete Randbedingung in der Spektraltheorie der halbbeschränkten gewöhnlichen Differentialoperatoren zweiter Ordnung. Math. Ann. 112, 1–23 (1935/36).
  • Friedrichs, K., On differential Operators in Hilbert Spaces. Amer. J. Math. 61, 523–544 (1939).
  • Hartman, Ph., Differential Equations with Non-Oscillatory Eigenfunctions. Duke Math. J. 15, 697–709 (1948).
  • Hinton, D., Limit Point-Limit Circle Criteria for (py′)′+qyky. Ordinary and Partial Differential Equations Proc. Conf. Dundee 1974. Springer Lecture Notes in Math. 415, 173–183 (1974).
  • Ikebe, T., and Kato, T., Uniqueness of the Self-Adjoint Extensions of Singular Elliptic Differential Operators. Arch. Rational Mech. Anal. 9, 77–92 (1962).
  • Jörgens, K., Wesentliche Selbstadjungiertheit singulärer elliptischer Differentialoperatoren zweiter Ordnung in C ${}_{0}^{∞}$ (G). Math. Scand. 15, 5–17 (1964).
  • Kalf, H., On the Characterization of the Friedrichs Extension of Ordinary or Elliptic Differential Operators with a Strongly Singular Potential. J. Functional Anal. 10, 230–250 (1972).
  • Kalf, H., Self-Adjointness for Strongly Singular Potentials with a — |x|2 Fall-Off at Infinity. Math. Z. 133, 249–255 (1973).
  • Kalf, H., Non-Existence of Eigenvalues of Schrödinger Operators. Proc. Royal Soc. Edinburgh 79A, 157–172 (1977).
  • Kalf, H., A Characterization of the Friedrichs Extension of Sturm-Liouville Operators. J. London Math. Soc. (2)17, 511–521 (1978).
  • Kalf, H., and Walter, J., Note on a Paper of Simon on Essentially Self-Adjoint Schrödinger Operators with Singular Potentials. Arch. Rational Mech. Anal. 52, 258–260 (1973).
  • Kalf, H., Schmincke, U.-W., Walter, J., and Wüst, R., On the Spectral Theory of Schrödinger and Dirac Operators with Strongly Singular Potentials. Proc. Symposium Dundee 1974. Springer Lecture Notes in Math. 448, 182–226 (1975).
  • Karlsson, B., Selfadjointness of Schrödinger Operators. Report No. 5, Institut Mittag-Leffler, 1976.
  • Karlsson, B., Schrödinger Operators with L ${}_{loc, weak}^{m/2}$ (Rm)-Potentials. Aarhus Universitet. Preprint Series No. 16, 1976/77.
  • Kato, T., Perturbation Theory for Linear Operators. 2nd Edition, Berlin: Springer 1976.
  • Kato, T., Schrödinger Operators with Singular Potentials. Israel J. Math. 13, 135–148 (1972).
  • Kato, T., Private Communication to B. Simon 1972.
  • Kato, T., A Second Look at the Essential Selfadjointness of the Schrödinger Operators. Physical Reality and Mathematical Description, 193–201 (C. P. Enz and J. Mehra eds.). Dordrecht: Reidel 1974.
  • Knowles, I., On Essential Self-Adjointness for Singular Elliptic Differential Operators. Math. Ann. 227, 155–172 (1977).
  • Knowles, I., On the Existence of Minimal Operators for Schrödinger-Type Differential Expressions. Math. Ann. 233, 221–227 (1978). Potentials. J. Math. Anal. Appl. 66, 574–585 (1978).
  • Knowles, I., On essential Self-Adjointness for Schrödingdr Operators with Wildly Oscillating Potentials. J. Math. Anal. Appl. 66, 574–585 (1978).
  • Kurss, H., A Limit-Point Criterion for Nonoscillatory Sturm-Liouville Differential Operators. Proc. Amer. Math. Soc. 18, 445–449 (1967).
  • Ladyženskaya, O. A., and Ural’ceva, N. N., Linear and Quasi-Linear Elliptic Equations. New York: Academic Press 1968.
  • Naimark, M. A., Linear Differential Operators. Part 2. New York: Ungar 1968.
  • Nilsson, N., Essential Self-Adjointness and the Spectral Resolution of Hamiltonian Operators. Kungl. Fysiogr. Sällsk. i. Lund Förh. Bd. 29, Nr. 1 (1959).
  • Povzner, A. Ya., The Expansion of Arbitrary Functions in Terms of Eigenfunctions of the Operator — Δu+cu. Amer. Math. Soc. Transl. (2), 60, 1–49 (1967) (english translation of Mat. Sh. 32, 109–156 (1953)).
  • Reed, M., and Simon, B., Methods of Modern Mathematical Physics II. Fourier Analysis. Self-Adjointness. New York: Academic Press 1975.
  • Rellich, F., Halbbeschränkte gewöhnliche Differentialoperatoren zweiter Ordnung. Math. Ann. 122, 343–368 (1950/51).
  • Rohde, H.-W., Über die Symmetrie elliptischer Differentialoperatoren. Math. Z. 86, 21–33 (1964).
  • Schechter, M., Spectra of Partial Differential Operators. Amsterdam: Elsevier 1971.
  • Schechter, M., Essential Self-Adjointness of the Schrödinger Operator with Magnetic Vector Potential. J. Functional Anal. 20, 93–104 (1975).
  • Scwartz, L., Théorie des distributions. Paris Hermann 1966.
  • Simader, C. G., Bemerkungen über Schrödinger-Operatoren mit stark singulären Potentialen. Math. Z. 138, 53–70 (1974).
  • Simader, C. G., Essential Self-Adjointness of Schrödinger Operators Bounded from Below. Math. Z. 159, 47–50 (1978).
  • Simon, B., Essential Self-Adjointness of Schrödinger Operators with Positive Potentials. Math. Ann. 201, 211–220 (1973).
  • Simon, B., Essential Self-Adjointness of Schrödinger Operators with Singular Potentials. Arch. Rational Mech. Anal. 52, 44–48 (1973).
  • Sobolev, S. L., On a Theorem of Functional Analysis. Amer. Math. Soc. Transl. (2)34, 39–68 (1963) (english translation of Mat. Sb. (N. S. 4)46, 471–497 (1938)).
  • Sobolev, S. L., Applications of Functional Analysis in Mathematical Physics. Providence: Amer. Math. Soc. 1963.
  • Stone, M. H., Linear Transformations in Hilbert Space and Their Applications to Analysis. New York: Colloq. Publ. Amer. Math. Soc. 1932.
  • Stummel, F.: Singuläre elliptische Differentialoperatoren in Hilbertschen Räumen. Math. Ann. 132, 150–176 (1956).
  • v. Wahl, W., A Remark to a Paper of Kato and Ikebe. Manuscripta math. 20, 197–208 (1977).
  • Yosida, K., Functional Analysis. 4th Edition. Berlin: Springer 1974.