Arkiv för Matematik

  • Ark. Mat.
  • Volume 12, Number 1-2 (1974), 253-266.

A maximum principle with applications to subharmonic functions in n-space

Ronald Gariepy and John Lewis

Full-text: Open access

Article information

Ark. Mat., Volume 12, Number 1-2 (1974), 253-266.

Received: 13 March 1974
First available in Project Euclid: 31 January 2017

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

1974 © Institut Mittag-Leffler


Gariepy, Ronald; Lewis, John. A maximum principle with applications to subharmonic functions in n -space. Ark. Mat. 12 (1974), no. 1-2, 253--266. doi:10.1007/BF02384762.

Export citation


  • Baernstein II, A., A generalization of the cos πϱ theorem, Trans. Amer. Math. Soc. (to appear).
  • Baernstein II, A., Integral means of schlicht functions, Acta Math. (to appear).
  • Courant, R. & Hilbert, D., Methods of mathematical physics, I. Wiley-Interscience, 1966.
  • Dahlberg, B., Mean values of subharmonic functions, Arkiv f. Mat. 10 (1972), 293–309.
  • Dahlberg, B., Growth properties of subharmonic functions, thesis, University of Göteborg, 1971.
  • Davis, B. & Lewis, J. L., An extremal property of some capacitary measures in E/, Proc. Amer. Math. Soc. 39 (1973) 520–524.
  • Essén, M. & Lewis, J. L., The generalized Ahlfors-Heins theorem in certain d-dimensional cones, Math. Scand. (to appear).
  • Federer, H., Geometric measure theory, Springer-Verlag, 1969.
  • Lelong-Ferrand, J., Extension du théoreme de Phragmen-Lindelöf-Heins aux Fonctions sousharmoniques dans un còne ou dans un cylindre, C. R. Acad. Sci. Paris 229 (1949), 411–413.
  • Gehring, F., Symmetrization of rings in space, Trans. Amer. Math. Soc. 101 (1961), 499–519.
  • Hardy, G., Littlewood, J., and Polya, G., Inequalities, Cambridge University Press, 1964.
  • Heins, M., Selected topics in the classical theory of functions of a complex variable, Holt, Rinehart, and Winston, 1962.
  • Helms, L., Introduction to potential theory, Wiley-Interscience, 1969.
  • Hüber, A., Ein raumliches analogon des Wiman-Heinsschen Satzes, Studies in mathematical analysis and related topics, Stanford University Press, 1962, 152–155.
  • Talpur, M., On the sets where a subharmonic function is large, thesis, Imperial College, London, 1967.