Arkiv för Matematik

  • Ark. Mat.
  • Volume 12, Number 1-2 (1974), 1-40.

On fundamental solutions supported by a convex cone

Arne Enqvist

Full-text: Open access

Article information

Source
Ark. Mat., Volume 12, Number 1-2 (1974), 1-40.

Dates
Received: 8 June 1973
First available in Project Euclid: 31 January 2017

Permanent link to this document
https://projecteuclid.org/euclid.afm/1485896189

Digital Object Identifier
doi:10.1007/BF02384744

Mathematical Reviews number (MathSciNet)
MR344657

Zentralblatt MATH identifier
0281.35015

Rights
1974 © Institut Mittag-Leffler

Citation

Enqvist, Arne. On fundamental solutions supported by a convex cone. Ark. Mat. 12 (1974), no. 1-2, 1--40. doi:10.1007/BF02384744. https://projecteuclid.org/euclid.afm/1485896189


Export citation

References

  • Beurling, A., Local harmonic analysis with some applications to differential operators. Some Recent Advan. Basic Sciences 1, 109–125, Academic Press, New York (1966).
  • Gelfand, I. M. and Shilov, G. E., Generalized Functions III. Academic Press, New York (1967).
  • Gindikin, S. G., A generalization of parabolic differential operators to the case of multidimensional time. Dokl. Akad. Nauk 173 (1967). (Russian; English translation in Soviet Math. Dokl. 8 (1967).
  • Gårding, L., Linear hyperbolic partial differential equations with constant coefficients. Acta Math. 85 (1951), 1–62.
  • Hörmander, L., Linear partial differential operators. Springer-Verlag, Berlin (1963).
  • —, On the characteristic Cauchy problem. Ann of Math. 88 (1968), 341–370.
  • —, On the singularities of solutions of partial differential equations. Comm. Pure Appl. Math. 23 (1970), 329–358.
  • Schwartz, L., Théorie des distributions I–II. Paris (1950–51).
  • Svensson, L., Necessary and sufficient conditions for the hyperbolicity of polynomials with hyperbolic principal part. Ark. Mat. 8 (1970), 145–162.
  • Trèves, F., Un théorème sur les équations aux dérivées partielles à coefficients constants dépendant de paramètres. Bull. Soc. Math. France 90 (1962), 473–486.