Arkiv för Matematik

  • Ark. Mat.
  • Volume 2, Number 5 (1953), 423-434.

Estimation and information in stationary time series

P. Whittle

Full-text: Open access


Section (1) is devoted to a discussion of the model-fitting problem, which finds its explicit solution in equation (1.13). In section (2) the maximum likelihood, (ML), estimates of the model parameters are investigated, and for the class of series considered shown to possess the same optimum properties as in the case of independent series. Next, the covariance matrix of the parameter estimates is expressed in terms of the spectral function of the generating process (eq. 3.7). The last section is concerned with certain working approximations to the ML statistics.

Article information

Ark. Mat., Volume 2, Number 5 (1953), 423-434.

First available in Project Euclid: 31 January 2017

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

1952 © Swets & Zeitlinger B.V.


Whittle, P. Estimation and information in stationary time series. Ark. Mat. 2 (1953), no. 5, 423--434. doi:10.1007/BF02590998.

Export citation


  • M. S. Bartlett: (1946): J. R. Statist. Soc., 7, No. 1, 27.
  • H. Cramér: (1942): Arkiv för matemtik, astronomi och fysik, 28 B, No. 12.
  • C. L. Dolph and M. A. Woodbury: Unpublished memorandum, University of Michigan.
  • J. L. Doob: (1949) Berkeley Symposium, p. 303.
  • R. A. Fisher: (1938) Statistical Theory of Estimation. Calcutta Readership Lectures.
  • M. G. Kendall: (1946) The Advanced Theory of Statistics, 2. C. Griffin.
  • E. L. Lehmann and C. Stein: (1948): Ann. Math. Stat., 19, 495.
  • A. Wald: (1943): Trans. Amer. Math. Soc., 36, 426.
  • P. Whittle: (1951) Hypothesis Testing in Time Series Analysis. Uppsala.
  • N. Wiener: (1949) Extrapolation, Interpolation: and Smoothing of Stationary Time Series. M.I.T.
  • H. Wold: (1938) A Study in the Analysis of Stationary Time Series. Uppsala.