Arkiv för Matematik

  • Ark. Mat.
  • Volume 1, Number 3 (1950), 195-277.

Stochastic processes and statistical inference

Ulf Grenander

Full-text: Open access

Article information

Source
Ark. Mat. Volume 1, Number 3 (1950), 195-277.

Dates
First available in Project Euclid: 30 January 2017

Permanent link to this document
https://projecteuclid.org/euclid.afm/1485803958

Digital Object Identifier
doi:10.1007/BF02590638

Zentralblatt MATH identifier
0041.45807

Rights
1950 © Swets & Zeitlinger B.V.

Citation

Grenander, Ulf. Stochastic processes and statistical inference. Ark. Mat. 1 (1950), no. 3, 195--277. doi:10.1007/BF02590638. https://projecteuclid.org/euclid.afm/1485803958.


Export citation

References

  • W. Ambrose: (1) On measurable stochastic processes, Trans. Amer. Math. Soc., 1940.
  • S. Banach: (1) Théorie des opérations linéaires Warsaw, 1933.
  • R. C. Cameron and W. T. Martin: (1) The behaviour of measure and measurability under change of scale in Wiener, space, Bull. Amer. Math. Soc., 1947.
  • H. Cramér: (1) Random variables and probability distributions, Cambridge tracts in Math., Cambridge, 1937.
  • H. Cramér: (2) On the theory of stationary random processes, Ann. of Math., 1940.
  • H. Cramér: (3) On harmonic analysis in certain functional spaces, Arkiv f. Mat. Astr. Fys., 1942.
  • —: (4) Mathematical Methods of Statistics, Princeton Univ. Press, Princeton, 1946.
  • J. L. Doob: (1) Stochastic processes depending on a continuous parameter Trans. Amer. Math. Soc., 1937.
  • J. L. Doob: (2) Stochastic processes with an integral-valued parameter, Trans. Amer. Math. Soc., 1938.
  • J. L. Doob: (3) The law of large numbers for continuous stochastic processes, Duke Math. Jour., 1940.
  • J. L. Doob: (4) The Brownian movement and stochastic equations, Ann. of Math., 1942.
  • J. L. Doob: (5) The elementary Gaussian processes, Ann. of Math. Stat., 1944.
  • J. L. Doob and W. Ambrose: (1) On the two formulations of the theory of stochastic processes depending upon a continuous parameter, Ann. of Math., 1940.
  • H. A. Einstein: (1) Der Geschiebetrieb als Wahrscheinlichkeitsproblem, Dissert., Zürich, 1937.
  • U. Grenander: (1) Stochastic processes and integral equations, Arkiv för Mat., 1949.
  • O. Hanner: (1) Deterministic and non-deterministic, stationary stochastic processes, Arkiv för Mat., 1949.
  • E. Hopf: (1) Ergodentheorie, Ergebnisse der Math., Vol. 5. No 2, Berlin, 1937.
  • K. Îto: (1) On the ergodicity of a certain stationary process, Proc. Imp. Acad. Tokyo, Vol. XX, 1944.
  • James, Nichols, Phillips: (1) Theory of servomechanisms, New York, 1947.
  • M. Kac and A. J. F. Siegert: (1) An explicit representation of a stationary Gaussian process, Ann. of Math. Stat., 1947.
  • K. Karhunen: (1) Zur Spektraltheorie stochastischer Prozesse, Ann. Ac. Sci. Fennicae, A I, 34, Helsinki, 1946.
  • K. Karhunen: (2) Lineare Transformationen stationärer stochastischer Prozesse, X Skand. Mat. Kongr. København, 1946.
  • K. Karhunen: (3) Über lineare Methoden in der Wahrscheinlichkeitsrechnung, Ann. Ac. Sci. Fennicae, A I 37, Helsinki, 1947.
  • K. Karhunen: (4) Über die Struktur stationärer zufälliger Funktionen, Arkiv för Mat., 1949.
  • M. G. Kendall: (1) The advanced theory of statistics, I, II, London, 1943, 1946.
  • A. Khintchine: (1) Korrelationstheorie der stationären stochastischen Prozesse, Math. Ann., 1934.
  • A. Kolmogoroff: (1) Grundbegriffe der Wahrscheinlichkeitsrechnung, Ergebnisse der Math., Vol. 2, No 3, Berlin, 1933.
  • P. Lévy: (1) Théorie de l'addition des variables aléatoires, Paris, 1937.
  • O. Lundberg: (1) On random processes and their application to sickness and accident statistics, Thesis, Stockholm, 1940.
  • R. Paley and N. Wiener: (1) Fourier transforms in the complex domain, New York, 1934.
  • B. J. Pettis: (1) On integration in vector spaces, Trans. Amer. Math. Soc., 1938.
  • S. Saks: (1) Theory of the integral, Warsaw, 1937.
  • A. Wald: (1) Asymptotic properties of the maximum likelihood estimate of an unknown parameter of a discrete stochastic process, Ann. of Math. Stat., 1948.
  • N. Wiener: (1) Extrapolation, interpolation and smoothing of stationary time series, New York 1949.
  • J. Wolfowitz: (1) The efficiency of sequential estimates and Wald's equation for sequential processes, Ann. of Math. Stat., 1947.