Arkiv för Matematik

  • Ark. Mat.
  • Volume 52, Number 1 (2014), 99-112.

Irreducible Harish-Chandra modules over extended Witt algebras

Xiangqian Guo, Genqiang Liu, and Kaiming Zhao

Full-text: Open access

Abstract

Let d be a positive integer, $A={\mathbb{C}} [t_{1}^{\pm1},\ldots ,t_{d}^{\pm1}]$ be the Laurent polynomial algebra, and $W=\operatorname{Der} (A)$ be the derivation Lie algebra of A. Then we have the semidirect product Lie algebra WA which we call the extended Witt algebra of rank d. In this paper, we classify all irreducible Harish-Chandra modules over WA with nontrivial action of A.

Article information

Source
Ark. Mat., Volume 52, Number 1 (2014), 99-112.

Dates
Received: 10 May 2012
Revised: 23 June 2012
First available in Project Euclid: 30 January 2017

Permanent link to this document
https://projecteuclid.org/euclid.afm/1485802653

Digital Object Identifier
doi:10.1007/s11512-012-0173-9

Mathematical Reviews number (MathSciNet)
MR3175296

Zentralblatt MATH identifier
06399251

Rights
2012 © Institut Mittag-Leffler

Citation

Guo, Xiangqian; Liu, Genqiang; Zhao, Kaiming. Irreducible Harish-Chandra modules over extended Witt algebras. Ark. Mat. 52 (2014), no. 1, 99--112. doi:10.1007/s11512-012-0173-9. https://projecteuclid.org/euclid.afm/1485802653


Export citation

References

  • Allison, B. N., Azam, S., Berman, S., Gao, Y. and Pianzola, A., Extended affine Lie algebras and their root systems, Mem. Amer. Math. Soc. 126:603 (1997).
  • Billig, Y., A category of modules for the full toroidal Lie algebra, Int. Math. Res. Not. 2006 (2006), 68395. 46 pp.
  • Billig, Y., Molev, A. and Zhang, R., Differential equations in vertex algebras and simple modules for the Lie algebra of vector fields on a torus, Adv. Math. 218 (2008), 1972–2004.
  • Billig, Y. and Zhao, K., Weight modules over exp-polynomial Lie algebras, J. Pure Appl. Algebra 191 (2004), 23–42.
  • Eswara Rao, S., Irreducible representations of the Lie-algebra of the diffeomorphisms of a d-dimensional torus, J. Algebra 182 (1996), 401–421.
  • Eswara Rao, S., Partial classification of modules for Lie algebra of diffeomorphisms of d-dimensional torus, J. Math. Phys. 45 (2004), 3322–3333.
  • Eswara Rao, S., Irreducible representations for toroidal Lie algebras, J. Pure Appl. Algebra 202 (2005), 102–117.
  • Eswara Rao, S. and Jiang, C., Classification of irreducible integrable representations for the full toroidal Lie algebras, J. Pure Appl. Algebra 200 (2005), 71–85.
  • Kac, V. and Raina, A., Bombay Lectures on Highest Weight Representations of Infinite Dimensional Lie Algebras, World Scientific, Singapore, 1987.
  • Guo, X. and Zhao, K., Irreducible weight modules over Witt algebras, Proc. Amer. Math. Soc. 139 (2011), 2367–2373.
  • Larsson, T. A., Multi dimensional Virasoro algebra, Phys. Lett. B 231 (1989), 94–96.
  • Larsson, T. A., Central and non-central extensions of multi-graded Lie algebras, J. Phys. A 25 (1992), 1177–1184.
  • Larsson, T. A., Conformal fields: A class of representations of Vect (N), Internat. J. Modern Phys. A 7 (1992), 6493–6508.
  • Larsson, T. A., Lowest energy representations of non-centrally extended diffeomorphism algebras, Comm. Math. Phys. 201 (1999), 461–470.
  • Larsson, T. A., Extended diffeomorphism algebras and trajectories in jet space, Comm. Math. Phys. 214 (2000), 469–491.
  • Lu, R. and Zhao, K., Classification of irreducible weight modules over higher rank Virasoro algebras, Adv. Math. 201 (2006), 630–656.
  • Lu, R. and Zhao, K., Classification of irreducible weight modules over the twisted Heisenberg–Virasoro algebra, Commun. Contemp. Math. 12 (2010), 183–205.
  • Mathieu, O., Classification of irreducible weight modules, Ann. Inst. Fourier (Grenoble ) 50 (2000), 537–592.
  • Mazorchuk, V. and Zhao, K., Supports of weight modules over Witt algebras, Proc. Roy. Soc. Edinburgh Sect. A 141 (2011), 155–170.
  • Patera, J. and Zassenhaus, H., The higher rank Virasoro algebras, Comm. Math. Phys. 136 (1991), 1–14.
  • Shen, G., Graded modules of graded Lie algebras of Cartan type. I. Mixed products of modules, Sci. Sinica Ser. A 29 (1986), 570–581.
  • Zhao, K., Weight modules over generalized Witt algebras with 1-dimensional weight spaces, Forum Math. 16 (2004), 725–748.