Open Access
August 2019 Endpoint estimates for multilinear fractional integral operators on metric measure spaces
Yuan Zhao, Haibo Lin, Yan Meng
Ann. Funct. Anal. 10(3): 337-349 (August 2019). DOI: 10.1215/20088752-2018-0033

Abstract

Let (X,d,μ) be a metric measure space such that, for any fixed xX, μ(B(x,r)) is a continuous function with respect to r(0,). In this paper, we prove endpoint estimates for the multilinear fractional integral operators Im,α from the product of Lebesgue spaces L1(μ)××L1(μ)×Lpk+1(μ)××Lpm(μ) into the Lebesgue space Lq(μ), where k[1,m)N, α[k,m), pi(1,) for i{k+1,,m} and 1/q=k+i=k+1m1/piα. We furthermore prove that Im,α is bounded from Lp1(μ)××Lpm(μ) into L(μ), where pi(1,) for i{1,,m} and i=1m1/pi=α[1,m).

Citation

Download Citation

Yuan Zhao. Haibo Lin. Yan Meng. "Endpoint estimates for multilinear fractional integral operators on metric measure spaces." Ann. Funct. Anal. 10 (3) 337 - 349, August 2019. https://doi.org/10.1215/20088752-2018-0033

Information

Received: 19 July 2018; Accepted: 11 November 2018; Published: August 2019
First available in Project Euclid: 6 August 2019

zbMATH: 07089121
MathSciNet: MR3989179
Digital Object Identifier: 10.1215/20088752-2018-0033

Subjects:
Primary: 47B47
Secondary: 30L99 , 42B20 , 42B35

Keywords: endpoint estimate , metric measure space , multilinear fractional integral

Rights: Copyright © 2019 Tusi Mathematical Research Group

Vol.10 • No. 3 • August 2019
Back to Top