Open Access
November 2017 Semifinite tracial subalgebras
Turdebek N. Bekjan, Azhar Oshanova
Ann. Funct. Anal. 8(4): 473-478 (November 2017). DOI: 10.1215/20088752-2017-0011

Abstract

Let M be a semifinite von Neumann algebra, and let A be a tracial subalgebra of M. We show that A is a subdiagonal algebra of M if and only if it has the unique normal state extension property and is a τ-maximal tracial subalgebra, which is also equivalent to A having the unique normal state extension property and satisfying L2-density.

Citation

Download Citation

Turdebek N. Bekjan. Azhar Oshanova. "Semifinite tracial subalgebras." Ann. Funct. Anal. 8 (4) 473 - 478, November 2017. https://doi.org/10.1215/20088752-2017-0011

Information

Received: 12 November 2016; Accepted: 14 December 2016; Published: November 2017
First available in Project Euclid: 2 June 2017

zbMATH: 06841328
MathSciNet: MR3717169
Digital Object Identifier: 10.1215/20088752-2017-0011

Subjects:
Primary: 46L52
Secondary: 47L05

Keywords: semifinite von Neumann algebra , subdiagonal algebra , tracial subalgebra

Rights: Copyright © 2017 Tusi Mathematical Research Group

Vol.8 • No. 4 • November 2017
Back to Top