Annals of Functional Analysis

Chlodowsky–Szasz–Appell-type operators for functions of two variables

Manjari Sidharth, Ana Maria Acu, and P. N. Agrawal

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text


This article deals with the approximation properties of the bivariate operators which are the combination of Bernstein–Chlodowsky operators and the Szász operators involving Appell polynomials. We investigate the degree of approximation of the operators with the help of the complete modulus of continuity and the partial moduli of continuity. In the last section of the paper, we introduce the generalized Boolean sum (GBS) of these bivariate Chlodowsky–Szasz–Appell-type operators and examine the order of approximation in the Bögel space of continuous functions by means of the mixed modulus of smoothness.

Article information

Ann. Funct. Anal., Volume 8, Number 4 (2017), 446-459.

Received: 4 September 2016
Accepted: 1 December 2016
First available in Project Euclid: 25 May 2017

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 41A36: Approximation by positive operators
Secondary: 41A25: Rate of convergence, degree of approximation

Chlodowsky operators Appell polynomials Szasz operators moduli of continuity


Sidharth, Manjari; Acu, Ana Maria; Agrawal, P. N. Chlodowsky–Szasz–Appell-type operators for functions of two variables. Ann. Funct. Anal. 8 (2017), no. 4, 446--459. doi:10.1215/20088752-2017-0009.

Export citation


  • [1] P. N. Agrawal and N. Ispir, Degree of approximation for bivariate Chlodowsky-Szasz-Charlier type operators, Results Math. 69 (2016), no. 3–4, 369–385.
  • [2] P. E. Appell, Sur une classe de polynomes, Ann. Sci. Éc. Norm. Supér. (2) 9 (1880), 119–144.
  • [3] A. Aral, V. Gupta, and R. P. Agarwal, Applications of q Calculus in Operator Theory, Springer, Berlin, 2013.
  • [4] Ç. Atakut and Büyükyazici, Stancu type generalizatiom of the Favard-Szász operators, Appl. Math. Lett. 23 (2010), no. 12, 1479–1482.
  • [5] F. Avram and M. S. Taqqu, Noncentral Limit Theorems and Appell Polynomials, Ann. Probab. 15 (1987), no. 2, 767–775.
  • [6] C. Badea, I. Badea, and H. H. Gonska, A test function theorem and approximation by pseudopolynomials, Bull. Aust. Math. Soc. 34 (1986), no. 1, 53–64.
  • [7] C. Badea, I. Badea, and H. H. Gonska, Notes on the degree of approximation of $B$-continuous and $B$-differentiable functions, Approx. Theory Appl. (N.S.) 4 (1988), no. 3, 95–108.
  • [8] K. Bögel, Mehrdimensionale Differentiation von Funtionen mehrerer Veränderlicher, J. Reine Angew. Math. 170 (1934), 197–217.
  • [9] K. Bögel, Über die mehrdimensionale differentiation, integration und beschränkte variation, J. Reine Angew. Math. 173 (1935), 5–29.
  • [10] K. Bögel, Über die mehrdimensionale differentiation, Jahresber. Dtsch. Math.-Ver. 65 (1962), 45–71.
  • [11] E. Dobrescu and I. Matei, The approximation by Bernstein type polynomials of bidimensionally continuous functions, An. Univ. Timişoara Ser. Sti. Mat.-Fiz. 4 (1966) 85–90.
  • [12] V. Gupta and R. P. Agarwal, Convergence Estimates in Approximation Theory, Springer, Cham, 2014.
  • [13] N. Ispir and C. Atakut, Approximation by modified Szász-Mirakyan operators on weighted spaces, Proc. Indian Acad. Sci. Math. Sci. 112 (2002), no. 4, 571–578.
  • [14] A. Jakimovski and D. Leviatan, Generalized Szász operators for the approximation in the infinite interval, Mathematica (Cluj) 34 (1969), 97–103.
  • [15] H. Karsli and V. Gupta, Some approximation properties of q-Chlodowsky operators, Appl. Math. Comput. 195 (2008), no. 1, 220–229.
  • [16] H. Karsli and V. Gupta, On convergence of $q$-Chlodovsky-type MKZD operators, Mat. Vesnik 65 (2013), no. 2, 187–196.
  • [17] A. Marchaud, Sur les Derivées et sur les Différences des Fonctions de Variables Réclles, J. Math. Pures Appl. (9) 232 (1927), no. 6, 337–425.
  • [18] I. M. Sheffer, Some properties of polynomial sets of type zero, Duke Math. J. 5 (1939), 590–622.
  • [19] M. Sidharth, N. Ispir, and P. N. Agrawal, GBS operators of Bernstein-Schurer-Kantorovich type based on $q$-integers, Appl. Math. Comput. 269 (2015), 558–568.
  • [20] Z. Walczak, On approximation by modified Szász-Mirakyan operators, Glas. Mat. Ser. III 37 (2002), no. 2, 303–319.