## Annals of Functional Analysis

### The $\lambda ^{+r}(\mu )$-statistical convergence

#### Abstract

Let $\lambda =(\lambda _{n})_{n\geq 1}$ be a nondecreasing sequence of positive numbers tending to infinity such that $\lambda _{1}=1$ and $\lambda_{n+1}\leq \lambda _{n}+1$ for all $n$, and let $I_{n}=[n-\lambda _{n}+1,n]$ for $n=1,2,\ldots$. Then for any given nonzero sequence $\mu$, we define by $\Delta ^{+}(\mu)$ the operator that generalizes the operator of the first difference and is defined by $\Delta ^{+}(\mu )x_{k}=\mu_{k}(x_{k}-x_{k+1})$. In this article, for any given integer $r\geq 1$, we deal with the $\lambda ^{+r}(\mu )$ -statistical convergence that generalizes in a certain sense the well-known $\lambda _{E}^{r}$-statistical convergence. The main results consist in determining sets of sequences $\chi$ and $\chi ^{\prime }$ of the form $s_{\xi }^{0}$ satisfying $\chi \subset [V,\lambda ]_{0}(\Delta ^{+r}(\mu ))\subset \chi^{\prime }$ and sets $\kappa$ and $\kappa^{\prime }$ of the form $s_{\xi }$ satisfying $\kappa \leq [V,\lambda ]_{\infty }(\lambda^{+r}(\mu ))\leq \kappa ^{\prime }$. This study is justified since the infinite matrix associated with the operator $\Delta ^{+r}(\mu )$ cannot be explicitly calculated for all ${r}$.

#### Article information

Source
Ann. Funct. Anal. Volume 8, Number 1 (2017), 1-15.

Dates
Received: 16 December 2015
Accepted: 14 May 2016
First available in Project Euclid: 14 October 2016

Permanent link to this document
https://projecteuclid.org/euclid.afa/1476450343

Digital Object Identifier
doi:10.1215/20088752-3720471

Mathematical Reviews number (MathSciNet)
MR3558300

#### Citation

de Malafosse, B.; Mursaleen, M.; Rakočević, V. The $\lambda ^{+r}(\mu )$ -statistical convergence. Ann. Funct. Anal. 8 (2017), no. 1, 1--15. doi:10.1215/20088752-3720471. https://projecteuclid.org/euclid.afa/1476450343

#### References

• [1] A. Alotaibi, B. Hazarika, and S. A. Mohiuddine, On lacunary statistical convergence of double sequences in locally solid Riesz spaces, J. Comput. Anal. Appl. 17 (2014), no. 1, 156–165.
• [2] A. Alotaibi and M. Mursaleen, Generalized statistical convergence of difference sequences, Adv. Difference Equ. 2013 (2013), 5 pp.
• [3] R. Çolak and Ç. Bektaş, $\lambda$-statistical convergence of order $\alpha$, Acta Math. Sci. Ser. B Engl. Ed. 31 (2011), no. 3, 953–959.
• [4] J. S. Connor, The statistical and strong p-Cesàro convergence of sequences, Analysis (Berlin) 8 (1988), no. 1–2, 47–63.
• [5] M. Et, Spaces of Cesàro difference sequences of order $r$ defined by a modulus function in a locally convex space, Taiwanese J. Math. 10 (2006), no. 4, 865–879.
• [6] M. Et, Y. Altin, and H. Altinok, On some generalized difference sequence spaces defined by a modulus function, Filomat 17 (2003), 23–33.
• [7] M. Et and F. Nuray, $\Delta ^{m}$-statistical convergence, Indian J. Pure Appl. Math. 32 (2001), no. 6, 961–969.
• [8] H. Fast, Sur la convergence statistique, Colloq. Math. 2 (1951), 241–244.
• [9] J. A. Fridy, On statistical convergence, Analysis (Berlin) 5 (1985), 301–313.
• [10] J. A. Fridy, Statistical limit points, Proc. Amer. Math. Soc. 118 (1993), 1187–1192.
• [11] J. A. Fridy and C. Orhan, Lacunary statistical convergence, Pacific J. Math. 160 (1993), no. 1, 43–51.
• [12] J. A. Fridy and C. Orhan, Statistical core theorems, J. Math. Anal. Appl. 208 (1997), no. 2, 520–527.
• [13] I. J. Maddox, Infinite Matrices of Operators, Lecture Notes in Math. 786, Springer, Berlin, 1980.
• [14] B. de Malafosse, On some BK space, Int. J. Math. Math. Sci. 28 (2003), no. 28, 1783–1801.
• [15] B. de Malafosse, On the sets of sequences that are strongly $\alpha$-bounded and $\alpha$-convergent to naught with index p, Rend. Semin. Mat. Univ. Politec. Torino 61 (2003), no. 1, 13–32.
• [16] B. de Malafosse, Calculations on some sequence spaces, Int. J. of Math. and Math. Sci. 31 (2004), no. 29–32, 1653–1670.
• [17] B. de Malafosse and E. Malkowsky, Sequence spaces and inverse of an infinite matrix, Rend. Circ. Mat. Palermo (2) 51 (2002), no. 2, 277–294.
• [18] B. de Malafosse and E. Malkowsky, Matrix transformations in the sets $\chi (\overline{N}_{p}\overline{N}_{q})$ where $\chi$ is in the form s$_{\xi }$, or s$_{\xi}^{{{}^{\circ }}}$, or s$_{\xi }^{(c)}$, Filomat 17 (2003), 85–106.
• [19] S. A. Mohiuddine and A. Alotaibi, Statistical summability of double sequences through de la Vallée-Poussin mean in probabilistic normed spaces, Abst. Appl. Anal. 2013, art. ID 215612.
• [20] A. Wilansky, Summability through Functional Analysis, North-Holland Math. Stud. 85, North-Holland, Amsterdam, 1984.