Annals of Functional Analysis

Some characterizations of variable Besov-type spaces

Douadi Drihem

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

The aim of this paper is to study properties of Besov-type spaces with variable smoothness and integrability. We show that these spaces are characterized by the $\varphi$-transforms in appropriate sequence spaces and we obtain atomic decompositions for these spaces.

Article information

Source
Ann. Funct. Anal., Volume 6, Number 4 (2015), 255-288.

Dates
First available in Project Euclid: 1 July 2015

Permanent link to this document
https://projecteuclid.org/euclid.afa/1435764016

Digital Object Identifier
doi:10.15352/afa/06-4-255

Mathematical Reviews number (MathSciNet)
MR3365996

Zentralblatt MATH identifier
1330.46031

Subjects
Primary: 46E35: Sobolev spaces and other spaces of "smooth" functions, embedding theorems, trace theorems
Secondary: 42B25: Maximal functions, Littlewood-Paley theory 42B35: Function spaces arising in harmonic analysis

Keywords
Besov-type space atom, maximal function variable exponent

Citation

Drihem, Douadi. Some characterizations of variable Besov-type spaces. Ann. Funct. Anal. 6 (2015), no. 4, 255--288. doi:10.15352/afa/06-4-255. https://projecteuclid.org/euclid.afa/1435764016


Export citation

References

  • A. Almeida and P. Hästö, Besov spaces with variable smoothness and integrability, J. Funct. Anal. 258 (2010), 1628–1655.
  • M. Bownik, Anisotropic Triebel–Lizorkin Spaces with Doubling Measures, J. Geom. Anal. 17 (2007), no. 3, 337–424.
  • D. Cruz-Uribe, A. Fiorenza, J.M. Martell and C. Pérez, The boundedness of classical operators in variable $L^{p}$ spaces, Ann. Acad. Sci. Fenn. Math. 13 (2006), 239–264.
  • L. Diening, Maximal function on generalized Lebesque spaces $ L^{p(\cdot )}$, Math. Inequal. Appl. 7 (2004), no. 2, 245–253.
  • L. Diening, P. Hästö and S. Roudenko, Function spaces of variable smoothness and integrability, J. Funct. Anal. 256 (2009), no. 6, 1731–1768.
  • L. Diening, P. Harjulehto, P. Hästö and M. R\ruž ička, Lebesgue and Sobolev spaces with variable exponents, Lecture Notes in Mathematics, vol. 2017, Springer-Verlag, Berlin 2011.
  • L. Diening, P. Harjulehto, P. Hästö, Y. Mizuta and T. Shimomura, Maximal functions in variable exponent spaces: limiting cases of the exponent, Ann. Acad. Sci. Fenn. Math. 34 (2009), no. 2, 503–522.
  • D. Drihem, Some embeddings and equivalent norms of the $ \mathcal{L}_{p,q}^{\lambda ,s}$ spaces, Funct. Approx. Comment. Math. 41 (2009), no. 1, 15–40.
  • D. Drihem, Atomic decomposition of Besov spaces with variable smoothness and integrability, J. Math. Anal. Appl. 389 (2012), no. 1, 15–31.
  • D. Drihem, Atomic decomposition of Besov-type and Triebel–Lizorkin-type spaces, Sci. China. Math. 56 (2013), no. 5, 1073–1086.
  • D. Drihem, Some properties of variable Besov-type spaces, Funct. Approx. Comment. Math. 52 (2015), no. 2, 193–221.
  • M. Frazier and B. Jawerth, Decomposition of Besov spaces, Indiana Univ. Math. J. 34 (1985), 777–799.
  • M. Frazier and B. Jawerth, A discrete transform and decomposition of distribution spaces, J. Funct. Anal. 93 (1990), no. 1, 34–170.
  • J. Fu and J. Xu, Characterizations of Morrey type Besov and Triebel–Lizorkin spaces with variable exponents, J. Math. Anal. Appl. 381 (2011), 280–298.
  • L. Hedberg and Y. Netrusov, An axiomatic approach to function spaces, spectral synthesis, and Luzin approximation, Mem. Amer. Math. Soc. 188 (2007), 97 pp.
  • H. Kempka and J. Vybíral, A note on the spaces of variable integrability and summability of Almeida and Hästö, Proc. Amer. Math. Soc. 141 (2013), no. 9, 3207–3212.
  • H. Kempka and J. Vybíral, Spaces of variable smoothness and integrability: Characterizations by local means and ball means of differences, J. Fourier Anal. Appl. 18 (2012), no. 4, 852–891.
  • H. Kozono and M. Yamazaki, Semilinear heat equations and the Navier-Stokes equation with distributions in new function spaces as initial data, Comm. PDE. 19 (1994), 959–1014.
  • Y. Liang, Y. Sawano, T. Ullrich, D. Yang and W. Yuan, A new framework for generalized Besov-type and Triebel–Lizorkin-type spaces, Dissertationes Math. (Rozprawy Mat.) 489 (2013), 114 pp.
  • A.L, Mazzucato, Besov–Morrey spaces: function space theory and applications to non-linear PDE, Trans. Amer. Math. Soc. 355 (2003), no. 4, 1297–1364.
  • C.B. Jr. Morrey, On the solutions of quasi-linear elliptic partial differential equations, Trans. Amer. Math. Soc. 43 (1938), no. 1, 126–166.
  • Y.V. Netrusov, Some imbedding theorems for spaces of Besov–Morrey type, (Russian) Numerical methods and questions in the organization of calculations, 7. Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 139 (1984), 139–147.
  • J. Peetre, On the theory of $\mathcal{L}_{p,\lambda }$ spaces, J. Funct. Anal. 4 (1969), 71–87.
  • M. R\ružička, Electrorheological fluids: modeling and mathematical theory, Lecture Notes in Mathematics, 1748, Springer-Verlag, Berlin, 2000.
  • V.S. Rychkov, Littlewood-Paley theory and function spaces with $A_{p}^{\text{loc}}$ weights, Math. Nachr. 224 (2001), 145–180.
  • Y. Sawano, Wavelet characterizations of Besov–Morrey and Triebel–Lizorkin-Morrey spaces, Funct. Approx. Comment. Math. 38 (2008), 93–107.
  • Y. Sawano, A note on Besov–Morrey spaces and Triebel–Lizorkin-Morrey spaces, Acta Math. Sinica, English Series. 25 (2009), no. 8, 1223–1242.
  • Y. Sawano, Brezis-Gallouët-Wainger type inequality for Besov–Morrey spaces, Studia Math. 196 (2010), 91–101.
  • Y. Sawano, D. Yang and W. Yuan, New applications of Besov-type and Triebel–Lizorkin-type paces, J. Math. Anal. Appl. 363 (2010), 73–85.
  • J.-O. Strömberg and A. Torchinsky, Weighted Hardy spaces, Lecture Notes in Math. 1381, Springer, Berlin, 1989.
  • E.M. Stein and G. Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton Univ. Press, Princeton, NJ, 1971.
  • H. Triebel, Theory of Function Spaces, Birkhäuser Verlag, Basel, 1983.
  • H. Triebel, Theory of Function Spaces II, Birkhäuser Verlag, Basel, 1992.
  • H. Triebel, Fractals and spectra, Birkhäuser, Basel 1997.
  • H. Triebel, Local function spaces, heat and Navier-Stokes equations, EMS Tracts in Mathematics, 20. European Mathematical Society (EMS), Zurich, 2013.
  • D. Yang and W. Yuan, A new class of function spaces connecting Triebel–Lizorkin spaces and $Q$ spaces, J. Funct. Anal. 255 (2008), 2760–2809.
  • D. Yang and W. Yuan, New Besov-type spaces and Triebel–Lizorkin-type spaces including $Q$ spaces, Math. Z. 265 (2010), 451–480.
  • D. Yang and W. Yuan, Relations among Besov-Type spaces, Triebel–Lizorkin-Type spaces and generalized Carleson measure spaces, Appl. Anal 92 (2013), no. 3, 549–561.
  • W. Yuan, W. Sickel and D. Yang, On the coincidence of certain approaches to smoothness spaces related to Morrey spaces, Math. Nachr. 286 (2013), no. 14-15, 1571–1584.
  • W. Yuan, D. Haroske, L. Skrzypczak, D. Yang, Embedding properties of Besov-type spaces, Appl. Anal. 94 (2015), no. 2, 318–340.
  • D. Yang, C. Zhuo and W. Yuan, Besov-Type spaces with variable smoothness and integrability, arXiv:1503.04512.
  • W. Yuan, W. Sickel and D. Yang, Morrey and Campanato meet Besov, Lizorkin and Triebel, Lecture Notes in Mathematics, vol. 2005, Springer-Verlag, Berlin 2010.
  • J. Xu, Variable Besov and Triebel–Lizorkin spaces, Ann. Acad. Sci. Fenn. Math. 33 (2008), 511–522.
  • J. Xu, An atomic decomposition of variable Besov and Triebel–Lizorkin spaces, Armen. J. Math. 2 (2009), no. 1, 1–12.