Annals of Functional Analysis

Interplay of Wiener--Hopf and Hankel operators with almost periodic Fourier symbols on standard and variable exponent Lebesgue spaces

L. P. Castro and A. S. Silva

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text


Wiener--Hopf plus Hankel and Wiener--Hopf minus Hankel operators in both frameworks of standard and variable exponent Lebesgue spaces are considered in this paper. The main aim is to describe certain dependencies between the Fredholm property of some Wiener--Hopf operators acting between variable exponent Lebesgue spaces and the invertibility of Wiener--Hopf plus and minus Hankel operators on all the standard Lebesgue spaces. Different types of Fourier symbols will be used but special focus will be considered on the Wiener subclass of almost periodic matrix functions. In the first part of the paper we will give a survey of investigations on related results. This will be useful at the end of the paper to derive the above mentioned dependencies between the operators under study.

Article information

Ann. Funct. Anal., Volume 6, Number 2 (2015), 49-59.

First available in Project Euclid: 19 December 2014

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 47B35: Toeplitz operators, Hankel operators, Wiener-Hopf operators [See also 45P05, 47G10 for other integral operators; see also 32A25, 32M15]
Secondary: 47A53: (Semi-) Fredholm operators; index theories [See also 58B15, 58J20] 47A05: General (adjoints, conjugates, products, inverses, domains, ranges, etc.) 47A20: Dilations, extensions, compressions 42A75: Classical almost periodic functions, mean periodic functions [See also 43A60]

Wiener--Hopf operator Hankel operator almost periodic function Fredholm property invertibility


Castro, L. P.; Silva, A. S. Interplay of Wiener--Hopf and Hankel operators with almost periodic Fourier symbols on standard and variable exponent Lebesgue spaces. Ann. Funct. Anal. 6 (2015), no. 2, 49--59. doi:10.15352/afa/06-2-5.

Export citation


  • G. Bogveradze and L.P. Castro, Invertibility characterization of Wiener–Hopf plus Hankel operators via odd asymmetric factorizations, Banach J. Math. Anal. 3 (2009), no. 1, 1–18.
  • L.P. Castro and A.S. Silva, Invertibility of matrix Wiener–Hopf plus Hankel operators with symbols producing a positive numerical range, Z. Anal. Anwend. 28 (2009), no. 1, 119–127.
  • L.P. Castro and A.S Silva, Invertibility criteria for Wiener–Hopf plus Hankel operators with different almost periodic Fourier symbol matrices, Ann. Mat. Pura Appl. 192 (2013), 1141–1152.
  • L.P. Castro and F.-O. Speck, Inversion of matrix convolution type operators with symmetry, Port. Math. 62 (2005), 193–216.
  • C. Corduneanu, Almost Periodic Functions, J. Wiley & Sons, New York, 1968.
  • D. Cruz-Uribe, A. Fiorenza, J.M. Martell and C. Pérez, The boundedness of classical operators on variable $L^p$ spaces, Ann. Acad. Sci. Fenn. Math. 31 (2006), no. 1, 239–264.
  • L. Diening, Maximal function on Musielak-Orlicz spaces and generalized Lebesgue spaces, Bull. Sci. Math. 129 (2005), 657–700.
  • L. Diening, P. Harjulehto, P. Hästö and M. R$\stackrel{\mbox{\tiny o}}{\mbox{u}}$\uzička, Lebesgue and Sobolev Spaces with Variable Exponents, Lecture Notes in Math., 2017, Springer, Heidelberg, 2011.
  • A. Yu. Karlovich and I.M. Spitkovsky, On singular integral operators with semi-almost periodic coefficients on variable Lebesgue spaces, J. Math. Anal. Appl. 384 (2011), no. 2, 706–725.
  • V.M. Kokilashvili and S.G. Samko, Operators of harmonic analysis in weighted spaces with non-standard growth, J. Math. Anal. Appl. 352 (2009), no. 1, 15–34.
  • V.G. Kurbatov, Functional-Differential Operators and Equations, Kluwer Academic Publishers, Dordrecht, 1999.
  • O. Kováčik and J. Rákosník, On spaces $L^{p(x)}$ and $W^{k,p(x)}$, Czechoslovak Math. J. 41 (1991), no. 4, 592–618.
  • S.G. Mikhlin, On multipliers of Fourier integrals (in Russian), Dokl. Akad. Nauk SSSR 109 (1956), 701–703.
  • J. Motos, M.J. Planells and C.F. Talavera, On variable exponent Lebesgue spaces of entire analytic functions, J. Math. Anal. Appl. 388 (2012), 775–787.
  • H. Nakano, Modulared Semi-Ordered Linear Spaces, Maruzen Co. Ltd., Tokyo, 1950.
  • H. Nakano, Topology of Linear Topological Spaces, Maruzen Co. Ltd., Tokyo, 1951.
  • A.P. Nolasco and L.P. Castro, A Duduchava–Saginashvili's type theory for Wiener–Hopf plus Hankel operators, J. Math. Anal. Appl. 331 (2007), 329–341.
  • W. Orlicz, Über konjugierte Exponentenfolgen, Studia Math. 3 (1931), 200–212.
  • M. R$\stackrel{\mbox{\tiny o}}{\mbox{u}}$\uzička, Electrorheological Fluids: Modeling and Mathematical Theory, Lecture Notes in Math., 1748, Springer, Berlin, 2000.
  • D. Sarason, Toeplitz operators with semi-almost periodic symbols, Duke Math. J. 44 (1977), 357–364.