Annals of Functional Analysis

Compact substitution operators on weighted spaces of continuous functions

H‎. ‎Kamowitz, ‎R‎. ‎K‎. ‎Singh, and D‎. ‎Wortman

Full-text: Open access


‎In this short note we present a characterization of compact substitution‎ ‎operators on some weighted spaces of continuous functions‎.

Article information

Ann. Funct. Anal. Volume 1, Number 2 (2010), 7- 11.

First available in Project Euclid: 12 May 2014

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 47B33: Composition operators
Secondary: 46J99‎ ‎47B38

Substitution operators ‎weighted spaces of continuous functions ‎system of weights


‎Kamowitz, H‎.; ‎Singh, ‎R‎. ‎K‎.; ‎Wortman, D‎. Compact substitution operators on weighted spaces of continuous functions. Ann. Funct. Anal. 1 (2010), no. 2, 7-- 11. doi:10.15352/afa/1399900583.

Export citation


  • I.P. Cornfield, S.V. Fomin and Y.C. Sinai, Ergodic theory, Springer-Verlag, Berlin, 1982.
  • H. Kamowitz, Compact weighted endomorphisms of $C(X)$, Proc. Amer. Math. Soc. 83 (1981), no. 3, 517–521.
  • D.H. Mayer, On composition operators of Banach spaces of holomorphic functions, J. Funct. Anal. 35 (1980), 191–206.
  • L. Nachbin, Elements of Approximation Theory, Math. Studies No. 14, Van Nostrand, Princeton, NJ, 1967.
  • E.A. Nordgen, Composition operators on Hilbert spaces, Lecture Notes in Math., 693, Springer-Veralg, Berlin, 37–63.
  • R.K. Singh and J.S. Manhas, Composition Operators on Function Spaces, North-Holland Math. Studies 179, Elsevier Science Pub., Amsterdam, 1993.
  • R.K. Singh and W.H. Summers, Compact and weakly compact composition operators on spaces of vector valued continuous functions, Proc. Amer. Math. Soc. 99 (1987), no. 4, 667–670.
  • R.K.Singh and W.H. Summers,Composition operators on weighted spaces of continuous functions, J. Austral. Math. Soc. (Series A) 45 (1988), 303–319.