Annals of Functional Analysis

On Some Difference Sequence Spaces of Weighted Means and Compact Operators‎

Metin Başarır and Emrah Evren Kara

Full-text: Open access

Abstract

‎In the peresent paper‎, ‎by using generalized weighted mean and difference‎ ‎matrix of order $m,$ we introduce the sequence spaces $X(u,v,\Delta^{(m)})$‎, ‎where $X$ is one of the spaces $\ell_{\infty}$‎, ‎$c$ or $c_{0}$‎. ‎Also‎, ‎we‎ ‎determine the $\alpha$-‎, ‎$\beta$‎- ‎and $\gamma$-duals of those spaces and‎ ‎construct their Schauder bases for $X\in\{c,c_{0}\}$‎. ‎Morever‎, ‎we give the‎ ‎characterization of the matrix mappings on the spaces $X(u,v,\Delta^{m})$‎ ‎ for $X\in\{\ell_{\infty},c,c_{0}\}.$ Finally‎, ‎we characterize some‎ ‎classes of compact operators on the spaces $\ell_{\infty}(u,v,\Delta^{m})$ and‎ ‎$c_{0}(u,v,\Delta^{m})$ by using the Hausdorff measure of noncompactness‎.

Article information

Source
Ann. Funct. Anal., Volume 2, Number 2 (2011), 114-129 .

Dates
First available in Project Euclid: 12 May 2014

Permanent link to this document
https://projecteuclid.org/euclid.afa/1399900200

Digital Object Identifier
doi:10.15352/afa/1399900200

Mathematical Reviews number (MathSciNet)
MR2855292

Zentralblatt MATH identifier
1259.46003

Subjects
Primary: 46A45: Sequence spaces (including Köthe sequence spaces) [See also 46B45]
Secondary: 46B15‎ ‎46B50

Keywords
$BK$ spaces ‎Weighted mean ‎matrix mappings ‎compact‎ ‎operators ‎Hausdorff measure of noncompactness

Citation

Başarır, Metin; Kara, Emrah Evren. On Some Difference Sequence Spaces of Weighted Means and Compact Operators‎. Ann. Funct. Anal. 2 (2011), no. 2, 114--129. doi:10.15352/afa/1399900200. https://projecteuclid.org/euclid.afa/1399900200


Export citation

References

  • B. Altay, On the space of p-summable difference sequences of order $m$ $(1\leq p<\infty),$ Stud. Sci. Math. Hungar. 43(2006), no. 4, 387–402.
  • B.Altay and F. Başar, Some paranormed sequence spaces of non-absolute type derived by weighted mean, J. Math. Anal. Appl. 319 (2006), 494–508.
  • C. Aydin and F. Başar, Some new difference sequence spaces, Appl. Math. Comput., 157 (2004), 677–693.
  • F. Başar and B. Altay, On the space of sequences of p-bounded variation and related matrix mappings, Ukrainian Math. J. 55 (2003), no. 1, 136–147.
  • F. Başar and E. Malkowsky, The characterization of compact operators on spaces of strongly summable and bounded sequences, Appl. Math. Comput. 217 (2011), 5199–5207.
  • R. Çolak and M. Et, On some generalized difference sequence spaces and related matrix transformations, Hokkaido Math. J. 26(1997), no. 3, 483–492.
  • B. de Malafosse and E. Malkowsky, On the measure of noncompactness of linear operators in spaces of strongly $\alpha $-summable and bounded sequences, Period. Math. Hungar. 55(2007), no. 2, 129–148.
  • B. de Malafosse and V. Rakočević, Applications of mesure of noncompactness in operators on the spaces $s_{\alpha},$ $s_{\alpha}^{0},$ $s_{\alpha}^{(c)},$ $\ell_{\alpha}^{(p)}$, J. Math. Anal. Appl. 323(2006), no. 1, 131–145.
  • I. Djolović, Compact operators on the spaces$a_{0}^{r}(\Delta)$ and $a_{c}^{r}(\Delta),$ J. Math. Anal. Appl. 318(2006), 658–666.
  • I. Djolović, On the space of bounded Euler difference sequences and some classes of compact operators, Appl. Math. Comput. 182(2006), 1803–1811.
  • I. Djolović and E. Malkowsky, A note on compact operators on matrix domains, J. Math. Anal.Appl. 340 (2008), no. 1, 291–303.
  • I. Djolović and E. Malkowsky, Matrix transformations and compact operators on some new $m^{th}$ order difference sequence spaces, Appl. Math. Comput. 198(2008), 700–714.
  • E.E. Kara and M. Başar\i r, On some Euler $B^{(m)}$difference sequence spaces and compact operators, J. Math. Anal. Appl. 379(2011), 499–511.
  • I.J. Maddox, Paranormed sequence spaces generated by infinite matrices, Proc.Camb. Phil. Soc., 64(1968), 335–340.
  • E. Malkowsky and S.D. Parashar, Matrix transformations in scpace of bounded and convergent difference sequence of order $m$, Analysis 17(1997), 87–97.
  • E. Malkowsky and V. Rakočević, An introduction into the theory of sequence spaces and measure of noncompactness, Zbornik radova, Matematicki inst. SANU, Belgrade 9 (2000), no. 17, 143–234.
  • E. Malkowsky and V. Rakočević, On matrix domains of triangles, Appl. Math. Comput. 189 (2007), no. 2, 1146–1163.
  • E. Malkowsky and V. Rakočević, The measure of noncompactness of linear operators between certain sequence spaces, Acta Sci. Math. (Szeged) 64 (1998), 151–171.
  • E. Malkowsky, V. Rakočević and S. Živković, Matrix transformations between the sequence spaces $w_{0}^{p}(\Lambda)$, $v_{0}^{p}(\Lambda)$, $c_{0}^{p}(\Lambda)(1<p<\infty)$ and certain $BK$ spaces, Appl. Math. Comput. 147(2004), no. 2, 377–396.
  • E. Malkowsky and E. Savaş, Matrix transformations between sequence spaces of generalized weighted mean, Appl. Math. Comput. 147(2004), 333–345.
  • M. Mursaleen, Application of measure of noncompactness to infinite system of differential equations. Canadian Math. Bull. 2011, doi:10.4153/CMB-2011-170-7.
  • M. Mursaleen, V. Karakaya, H. Polat and N. Şimşek, Measure of noncompactness of matrix operators on some difference sequence spaces of weighted means, Comput. Math. Appl. 62(2011) 814–820.
  • M. Mursaleen and A.K. Noman, Applications of the Hausdorff measure of noncompactness in some sequence spaces of weighted means, Comput. Math. Appl. 60(2010), no.5, 245–1258.
  • M. Mursaleen and A.K Noman, Compactness by the Hausdorff measure of noncompactness, Nonlinear Anal., 73(2010), no. 8, 2541–2557.
  • M. Mursaleen and A.K. Noman, Compactness of matrix operators on some new difference sequence spaces. Linear Algebra Appl. doi:10.1016/j.laa.2011.06.014.
  • M. Mursaleen and A.K. Noman, On some new difference sequence spaces of non-absolute type, Math. Comput. Modelling, 52 (2010), 603–617.
  • M. Mursaleen and A.K. Noman, On the spaces of $\lambda$-convergent and bounded sequences, Thai J. Math. 8(2010), no. 2, 311–329.
  • H. Polat and F.Başar, Some Euler spaces of difference sequences of order $m,$ Acta Math. Sci. 27B(2007), no. 2, 254–266.
  • H. Polat, V. Karakaya and N. Şimşek, Difference sequence spaces derived by generalized weighted mean, Appl. Math. Lett. 24(2011), no. 5, 608–614.
  • V. Rakočević, Measures of noncompactness and some applications, Filomat 12 (1998), 87–120.
  • M. Stieglitz and H. Tietz, Matrix transformationen von folgenräumen eine ergebnisübersicht, Math. Z., 154 (1977), 1–16.
  • A. Wilansky, Summability Through Functional Analysis, North-Holland Math. Studies 85, Amsterdam, 1986.