Annals of Functional Analysis

On strongly $h$-convex functions

Hiliana Angulo, ‎José Giménez, ‎Ana Milena Moros, and Kazimierz Nikodem

Full-text: Open access

Abstract

‎We introduce the notion of strongly $h$-convex functions (defined on‎ ‎a normed space) and present some properties and representations of‎ ‎such functions‎. ‎We obtain a characterization of inner product spaces‎ ‎involving the notion of strongly $h$-convex functions‎. ‎Finally‎, ‎a‎ ‎Hermite-Hadamard-type inequality for strongly $h$-convex functions‎ ‎is given‎.

Article information

Source
Ann. Funct. Anal. Volume 2, Number 2 (2011), 85- 91.

Dates
First available in Project Euclid: 12 May 2014

Permanent link to this document
https://projecteuclid.org/euclid.afa/1399900197

Digital Object Identifier
doi:10.15352/afa/1399900197

Mathematical Reviews number (MathSciNet)
MR2855289

Zentralblatt MATH identifier
1253.26015

Subjects
Primary: 26A51: Convexity, generalizations
Secondary: 46C15‎ ‎39B62

Keywords
Hermite-Hadamard inequality ‎$h$-convex function ‎strongly convex function ‎inner product space

Citation

Angulo, Hiliana; Giménez, ‎José; Milena Moros, ‎Ana; Nikodem, Kazimierz. On strongly $h$-convex functions. Ann. Funct. Anal. 2 (2011), no. 2, 85-- 91. doi:10.15352/afa/1399900197. https://projecteuclid.org/euclid.afa/1399900197


Export citation

References

  • W.W. Breckner, Stetigkeitsaussagen für eine Klasse varallgemeinerter konwexer funktionen in topologischen linearn Räumen, Publ. Inst. Math. 23 (1978), 13–20.
  • M. Bombardelli and S. Varo\usanec, Properties of $h$-convex functions related to the Hermite–Hadamard-Fejér inequalities, Comput. Math. Appl. 58 (2009), no. 9, 1869–1877.
  • S.S. Dragomir and S. Fitzpatrik, The Hadamard�s inequality for $s$-convex functions in the second sense, Demonstratio Math. 32 (1999), no. 4, 687–696.
  • S.S. Dragomir, J. Pečarić and L.E. Persson, Some inequalities of Hadamard type, Soochow J. Math. 21 (1995), no. 3, 335–341.
  • S.S. Dragomir and C.E.M. Pearce, Selected Topics on Hermite–Hadamard Inequalities and Applications, RGMIA Monographs, Victoria University, 2000. (ONLINE: http://rgmia.vu.edu.au/monographs/).
  • J.B. Hiriart-Urruty and C. Lemaréchal, Fundamentals of Convex Analysis, Springer-Verlag, Berlin-Heidelberg, 2001.
  • N. Merentes and K. Nikodem, Remarks on strongly convex functions, Aequationes Math. 80 (2010), no. 1-2, 193-199.
  • C.P. Niculescu and L.E. Persson, Convex Functions and their Applications. A Contemporary Approach, CMS Books in Mathematics, 23, Springer- Verlag, New York, 2006.
  • K. Nikodem and Zs. Páles, Characterizations of inner product spaces be strongly convex functions, Banach J. Math. Anal. 5 (2011), no. 1, 83–87.
  • C.E.M. Pearce and A.M. Rubinov, $P$-functions, quasi-convex functions and Hadamard-type inequalities , J. Math. Anal. Appl. 240 (1999), no. 1, 92–104.
  • E. Polovinkin, Strongly convex analysis, translation in Sb. Math. 187 (1996), no. 2, 259–286.
  • B.T. Polyak, Existence theorems and convergence of minimizing sequences in extremum problems with restictions, Soviet Math. Dokl. 7 (1966), 72–75.
  • M.Z. Sarikaya, E. Set and M.E. Özdemir, On some new inequalities of Hadamard type involving $h$-convex functions, Acta Math. Univ. Comenianae. 79 (2010), no. 2, 265–272.
  • M.Z. Sarikaya, A. Saglam and H. Yildirim, On some Hadamard-type inequalities for $h$-convex functions, J. Math. Inequal. 2 (2008), no. 3, 335–341.
  • J.P. Vial, Strong convexity of set and functions, J. Math. Econom9 (1982), no. 1-2, 187–205.
  • J.P. Vial, Strong and weak convexity of sets and functions, Math. Oper. Res. 8 (1983), no. 2, 231–259.
  • S. Varo\usanec, On $h$-convexity, J. Math. Anal. Appl. 326 (2007), no. 1, 303–311.