Open Access
2011 On strongly $h$-convex functions
Hiliana Angulo, ‎José Giménez, ‎Ana Milena Moros, Kazimierz Nikodem
Ann. Funct. Anal. 2(2): 85-91 (2011). DOI: 10.15352/afa/1399900197

Abstract

‎We introduce the notion of strongly $h$-convex functions (defined on‎ ‎a normed space) and present some properties and representations of‎ ‎such functions‎. ‎We obtain a characterization of inner product spaces‎ ‎involving the notion of strongly $h$-convex functions‎. ‎Finally‎, ‎a‎ ‎Hermite-Hadamard-type inequality for strongly $h$-convex functions‎ ‎is given‎.

Citation

Download Citation

Hiliana Angulo. ‎José Giménez. ‎Ana Milena Moros. Kazimierz Nikodem. "On strongly $h$-convex functions." Ann. Funct. Anal. 2 (2) 85 - 91, 2011. https://doi.org/10.15352/afa/1399900197

Information

Published: 2011
First available in Project Euclid: 12 May 2014

zbMATH: 1253.26015
MathSciNet: MR2855289
Digital Object Identifier: 10.15352/afa/1399900197

Subjects:
Primary: 26A51‎
Secondary: ‎39B62 , 46C15

Keywords: ‎$h$-convex function , Hermite-Hadamard inequality , ‎inner product space , ‎strongly convex function

Rights: Copyright © 2011 Tusi Mathematical Research Group

Vol.2 • No. 2 • 2011
Back to Top