Annals of Functional Analysis

Approximation of Analytic Functions by Special Functions

Soon-Mo Jung

Full-text: Open access

Abstract

‎We survey the recent results concerning the applications of power‎ ‎series method to the study of Hyers-Ulam stability of differential‎ ‎equations‎.

Article information

Source
Ann. Funct. Anal., Volume 3, Number 1 (2012), 92-99.

Dates
First available in Project Euclid: 12 May 2014

Permanent link to this document
https://projecteuclid.org/euclid.afa/1399900026

Digital Object Identifier
doi:10.15352/afa/1399900026

Mathematical Reviews number (MathSciNet)
MR2903270

Zentralblatt MATH identifier
1256.34043

Subjects
Primary: 34A05: Explicit solutions and reductions
Secondary: 39B82‎ ‎26D10‎ ‎34A40‎ ‎46N20

Keywords
Hyers-Ulam stability ‎power series method ‎special‎ ‎function ‎approximation

Citation

Jung, Soon-Mo. Approximation of Analytic Functions by Special Functions. Ann. Funct. Anal. 3 (2012), no. 1, 92--99. doi:10.15352/afa/1399900026. https://projecteuclid.org/euclid.afa/1399900026


Export citation

References

  • C. Alsina and R. Ger, On some inequalities and stability results related to the exponential function, J. Inequal. Appl. 2 (1998), 373–380.
  • S. Czerwik, Functional Equations and Inequalities in Several Variables, World Scientific, River Edge, NJ, 2002.
  • G.L. Forti, Hyers–Ulam stability of functional equations in several variables, Aequationes Math. 50 (1995), 143–190.
  • D.H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci. USA 27 (1941), 222–224.
  • D.H. Hyers, G. Isac and Th.M. Rassias, Stability of Functional Equations in Several Variables, Birkhäuser, Boston, 1998.
  • D.H. Hyers and Th.M. Rassias, Approximate homomorphisms, Aequationes Math. 44 (1992), 125–153.
  • S.-M. Jung, Hyers–Ulam stability of linear differential equations of first order, Appl. Math. Lett. 17 (2004), 1135–1140.
  • S.-M. Jung, Hyers–Ulam stability of linear differential equations of first order, II, Appl. Math. Lett. 19 (2006), 854–858.
  • S.-M. Jung, Hyers–Ulam stability of a system of first order linear differential equations with constant coefficients, J. Math. Anal. Appl. 320 (2006), 549–561.
  • S.-M. Jung, Legendre's differential equation and its Hyers–Ulam stability, Abstr. Appl. Anal. 2007 (2007), Article ID 56419, 14 pp.
  • S.-M. Jung, Approximation of analytic functions by Airy functions, Integral Transforms Spec. Funct. 19 (2008), no. 12, 885–891.
  • S.-M. Jung, Approximation of analytic functions by Hermite functions, Bull. Sci. Math. 133 (2009), 756–764.
  • S.-M. Jung, Approximation of analytic functions by Legendre functions, Nonlinear Anal. (TMA) 71 (2009), no. 12, 103–108.
  • S.-M. Jung, A fixed point approach to the stability of differential equations y'=F(x,y), Bull. Malays. Math. Sci. Soc. (2) 33 (2010), no. 1, 47–56.
  • S.-M. Jung, Approximation of analytic functions by Kummer functions, J. Inequal. Appl. 2010 (2010), Article ID 898274, 11 pp.
  • S.-M. Jung, Approximation of analytic functions by Laguerre functions, Appl. Math. Comput. 218 (2011), no. 3, 832–835.
  • S.-M. Jung, Hyers–Ulam-Rassias Stability of Functional Equations in Nonlinear Analysis, Springer, New York, 2011.
  • S.-M. Jung, Approximation of analytic functions by Bessel's functions of fractional order, Abstr. Appl. Anal. 2011 (2011), Article ID 923269, 13 pp.
  • S.-M. Jung and B. Kim, Chebyshev's differential equation and its Hyers–Ulam stability, Differ. Equ. Appl. 1 (2009), 199–207.
  • S.-M. Jung and S. Min, On approximate Euler differential equations, Abstr. Appl. Anal. 2009 (2009), Article ID 537963, 8 pp.
  • S.-M. Jung and Th. M. Rassias, Approximation of analytic functions by Chebyshev functions, Abstr. Appl. Anal. 2011 (2011), Article ID 432961, 10 pp.
  • B. Kim and S.-M. Jung, Bessel's differential equation and its Hyers–Ulam stability, J. Inequal. Appl. 2007 (2007), Article ID 21640, 8 pp.
  • T. Miura, S.-M. Jung and S.-E. Takahasi, Hyers–Ulam-Rassias stability of the Banach space valued differential equations $y' = \lambda y$, J. Korean Math. Soc. 41 (2004), 995–1005.
  • M. Ob\aloza, Hyers stability of the linear differential equation, Rocznik Nauk.-Dydakt. Prace Mat. 13 (1993), 259–270.
  • M. Ob\aloza, Connections between Hyers and Lyapunov stability of the ordinary differential equations, Rocznik Nauk.-Dydakt. Prace Mat. 14 (1997), 141–146.
  • Th.M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297–300.
  • S.-E. Takahasi, T. Miura and S. Miyajima, On the Hyers–Ulam stability of the Banach space-valued differential equation $y' = \lambda y$, Bull. Korean Math. Soc. 39 (2002), 309–315.
  • S.M. Ulam, Problems in Modern Mathematics, Wiley, New York, 1964.