Annals of Functional Analysis

Weighted composition operators from Cauchy integral transforms to‎ ‎logarithmic weighted-type spaces

Ajay K‎. ‎Sharma

Full-text: Open access

Abstract

‎We characterize boundedness and compactness‎ ‎of weighted composition operators from the space of Cauchy integral transforms to logarithmic weighted-type spaces‎. ‎We also manage to compute‎ ‎norm of weighted composition operators‎ ‎acting between these spaces‎.

Article information

Source
Ann. Funct. Anal., Volume 4, Number 1 (2013), 163-174.

Dates
First available in Project Euclid: 12 May 2014

Permanent link to this document
https://projecteuclid.org/euclid.afa/1399899844

Digital Object Identifier
doi:10.15352/afa/1399899844

Mathematical Reviews number (MathSciNet)
MR3004218

Subjects
Primary: 47B33‎
Secondary: 30D55

Keywords
Weighted composition operator ‎Cauchy integral transforms ‎logarithmic weighted-type space little logarithmic weighted-type‎ ‎space

Citation

K‎. ‎Sharma, Ajay. Weighted composition operators from Cauchy integral transforms to‎ ‎logarithmic weighted-type spaces. Ann. Funct. Anal. 4 (2013), no. 1, 163--174. doi:10.15352/afa/1399899844. https://projecteuclid.org/euclid.afa/1399899844


Export citation

References

  • R.F. Allen and F. Collona, Weighted composition operators from $H^\infty$ to the Bloch space of a bounded homogeneous domain, Integral Equations Operator Theory 66 (2010), no. 1, 21–40.
  • R.F. Allen and F. Collona, Weighted composition operators on the Bloch space of a bounded homogeneous domain, Oper. Theory Adv. Appl. 202 (2010), 11–37.
  • P. Bourdon and J.A. Cima, On integrals of Cauchy-Stieltjes type, Houston J. Math. 14 (1988), no. 4, 465–474.
  • J.A. Cima and A.L. Matheson, Cauchy transforms and composition operators, Illinois J. Math. 4 (1998), no. 1, 58–69.
  • J.A. Cima and T.H. MacGregor, Cauchy transforms of measures and univalent functions, Lecture Notes in Math. 1275, Spinger-Verlag 1987, 78–88.
  • C.C. Cowen and B.D. MacCluer, Composition operators on spaces of analytic functions, CRC Press Boca Raton, New York, 1995.
  • F. Forelli, The isometries of $H^p$, Canad. J. Math. 16 (1964), 721–728.
  • F. Forelli, A theorem on isometries and the application of it to the isometries of $H^p(S)$ for $2 < p < \infty$, Canad. J. Math. 25 (1973), 284–289.
  • R. Hibschweiler and E. Nordgren, Cauchy transforms of measures and weighted shift operators on the disc algebra, Rocky Mountain J. Math. 26 (1996), no. 2, 627–654.
  • S. Li and S. Stević, Generalized composition operators on Zygmund spaces and Bloch type spaces, J. Math. Anal. Appl. 338 (2008), no. 2, 1282–1295.
  • S. Li and S. Stević, Products of composition and integral type operators from $H^{\infty}$ and the Bloch space, Complex Var. Elliptic Equ. 53 (2008), no. 5, 463–474.
  • S. Li and S. Stević, Products of Volterra type operator and composition operator from $H^{\infty}$ and Bloch spaces to Zygmund spaces, J. Math. Anal. Appl. 345 (2008), no. 1, 40–50.
  • K. Madigan and A. Matheson, Compact composition operators on the Bloch space, Trans. Amer. Math. Soc. 347 (1995), no. 7, 2679–2687.
  • S. Ohno, K. Stroethoff and R. Zhao, Weighted composition operators between Bloch-type spaces, Rocky Mountain J. Math. 33 (2003), no. 1, 191–215.
  • J.H. Shapiro, Composition operators and classical function theory, Springer-Verlag, New York. 1993.
  • A.K. Sharma, Volterra composition operators between Bergman-Nevanlinna and Bloch-type spaces, Demonstratio Math. 42 (2009), no. 3, 607–618.
  • A.K. Sharma, Products of multiplication, composition and differentiation between weighted Bergman-Nevanlinna and Bloch-type spaces, Turkish. J. Math. 35 (2011), no. 2, 275–291.
  • A.K. Sharma and S. Ueki, Compactness of composition operators acting on weighted Bergman Orlicz spaces, Ann. Polon. Math. 103 (2011), no. 1, 1–13.
  • A.K. Sharma and S. Ueki, Composition operators from Nevanlinna type spaces tp Bloch type spaces, Banach J. Math. Anal. 6 (2012), no. 1, 112–123.
  • A. Sharma and A.K. Sharma, Carleson measures and a class of generalized integration operators on the Bergman space, Rocky Mountain J. Math. 41 (2011), no. 5, 711–724.
  • S. Stević, Weighted composition operators between mixed norm spaces and $H^\infty_\alpha$ spaces in the unit ball, J. Inequal. Appl. 2007, Article ID 28629, 9 pp.
  • S. Stević, Generalized composition operators from logarithmic Bloch spaces to mixed-norm spaces, Util. Math. 77 (2008) 167–172.
  • S. Stević, Weighted iterated radial composition operators between some spaces of holomorphic functions on the unit ball, Abstr. Appl. Anal. 2010 Article ID 801264, 14 pp.
  • S. Stević and A.K. Sharma, Essential norm of composition operators between weighted Hardy spaces, Appl. Math. Comput. 217 (2011), no. 13, 6192–6197.
  • S. Stević and A.K. Sharma, Composition operators from the space of Cauchy transforms to Bloch and the little Bloch-type spaces on the unit disk, Appl. Math. Comput. 217 (2011), no. 24, 10187–10194.
  • S. Stević, A.K. Sharma and A. Bhat, Products of multiplication composition and differentiation operators on weighted Bergman spaces, Appl. Math. Comput. 217 (2011), no. 20, 8115–8125.