Open Access
2017 Hammerstein Equations with Lipschitz and Strongly Monotone Mappings in Classical Banach spaces
C. Diop, T. M. M. Sow, N. Djitte, C. E. Chidume
Afr. Diaspora J. Math. (N.S.) 20(2): 1-15 (2017).

Abstract

Let $E$ be a Banach space either $l_p$ or $L_p$ or $W^{m,p}$, $1 < p < \infty$, with dual $E^*$, and let $F :E\mapsto E^*$, $K: E^*\mapsto E $ be Lipschitz and strongly monotone mappings with $D(K)=R(F)=E^*$. Assume that the Hammerstein equation $u+KFu=0$ has a unique solution $\bar u$. For given $u_1\in E$ and $v_1\in E^*$, let $\{u_n\}$ and $\{v_n\}$ be sequences generated iteratively by: $u_{n+1} = J^{-1}(Ju_n -\lambda(Fu_n-v_n)),\,\,\,n\geq 1$ and $v_{n+1} = J(J^{-1}v_n-\lambda(Kv_n+u_n)),\,\,\,n\geq 1$, where $J$ is the duality mapping from $E$ into $E^*$ and $\lambda$ is a positive real number in $(0,1)$ satisfying suitable conditions. Then it is proved that the sequence $\{u_n\}$ converges strongly to $\bar u$, the sequence $\{v_n\}$ converges strongly to $\bar v$, with $\bar{v}= F\bar{u}.$ Furthermore, our technique of proof is of independent interest.

Citation

Download Citation

C. Diop. T. M. M. Sow. N. Djitte. C. E. Chidume. "Hammerstein Equations with Lipschitz and Strongly Monotone Mappings in Classical Banach spaces." Afr. Diaspora J. Math. (N.S.) 20 (2) 1 - 15, 2017.

Information

Published: 2017
First available in Project Euclid: 17 May 2017

zbMATH: 06754627
MathSciNet: MR3637472

Subjects:
Primary: 47H04 , 47H06 , 47H15 , 47H17 , 47J25

Keywords: duality mappings , Hammerstein Equations , iterative algorithm , Lipschitz maps , Strongly monotone mappings

Rights: Copyright © 2017 Mathematical Research Publishers

Vol.20 • No. 2 • 2017
Back to Top