Abstract
Let $E$ be a Banach space either $l_p$ or $L_p$ or $W^{m,p}$, $1 < p < \infty$, with dual $E^*$, and let $F :E\mapsto E^*$, $K: E^*\mapsto E $ be Lipschitz and strongly monotone mappings with $D(K)=R(F)=E^*$. Assume that the Hammerstein equation $u+KFu=0$ has a unique solution $\bar u$. For given $u_1\in E$ and $v_1\in E^*$, let $\{u_n\}$ and $\{v_n\}$ be sequences generated iteratively by: $u_{n+1} = J^{-1}(Ju_n -\lambda(Fu_n-v_n)),\,\,\,n\geq 1$ and $v_{n+1} = J(J^{-1}v_n-\lambda(Kv_n+u_n)),\,\,\,n\geq 1$, where $J$ is the duality mapping from $E$ into $E^*$ and $\lambda$ is a positive real number in $(0,1)$ satisfying suitable conditions. Then it is proved that the sequence $\{u_n\}$ converges strongly to $\bar u$, the sequence $\{v_n\}$ converges strongly to $\bar v$, with $\bar{v}= F\bar{u}.$ Furthermore, our technique of proof is of independent interest.
Citation
C. Diop. T. M. M. Sow. N. Djitte. C. E. Chidume. "Hammerstein Equations with Lipschitz and Strongly Monotone Mappings in Classical Banach spaces." Afr. Diaspora J. Math. (N.S.) 20 (2) 1 - 15, 2017.
Information