African Diaspora Journal of Mathematics

Admissible Monomials and Generating Sets for the Polynomial Algebra as a Module Over the Steenrod Algebra

M. F. Mothebe

Full-text: Open access

Abstract

For $n\geq 1,$ let $ \mathbf{P}(n) = \mathbb{F}_2[x_1,\ldots,x_n]$ be the polynomial algebra in $n$ variables $x_i,$ of degree one, over the field $\mathbb{F}_2$ of two elements. The mod2 Steenrod algebra ${\cal A}$ acts on $\mathbf{P}(n)$ according to well known rules. Let ${\cal A}^+\mathbf{P}(n)$ denote the image of the action of the positively graded part of ${\cal A}.$ A major problem is that of determining a basis for the quotient vector space $\mathbf{Q}(n) = \mathbf{P}(n)/{\cal A}^+\mathbf{P}(n).$ Both ${\mathbf{P} }(n) = \oplus_{d\geq0}\mathbf{P}^{d}(n)$ and $\mathbf{Q}(n)$ are graded where $\mathbf{P}^{d}(n)$ denotes the set of homogeneous polynomials of degree $d.$ In this paper we show that if $n \geq 2,$ and $d \geq 1$ can be expressed in the form $d = \sum_{i=1}^{n1} (2^{\lambda_i}1)$ with ${\lambda_1}> {\lambda_2} > \ldots >{\lambda_{n2}} \geq {\lambda_{n1}}\geq 1,$ then $${\rm {dim}}(\mathbf{Q}^{d}(n)) \geq \left (\sum_{q=1}^{{\rm min}\{ {\lambda}_{n1},n\}} {{n}\choose {q}}\right ) ({\rm {dim}}(\mathbf{Q}^{d'}(n1)) )$$ where $ d'= \sum_{i=1}^{n1} (2^{\lambda_i \lambda_{n1}}1).$

Article information

Source
Afr. Diaspora J. Math. (N.S.), Volume 16, Number 1 (2013), 18-27.

Dates
First available in Project Euclid: 12 August 2013

Permanent link to this document
https://projecteuclid.org/euclid.adjm/1376312566

Mathematical Reviews number (MathSciNet)
MR3091712

Zentralblatt MATH identifier
1278.05252

Subjects
Primary: 05E99: None of the above, but in this section 55S10: Steenrod algebra

Keywords
Steenrod squares Polynomial algebra Hit problem

Citation

Mothebe, M. F. Admissible Monomials and Generating Sets for the Polynomial Algebra as a Module Over the Steenrod Algebra. Afr. Diaspora J. Math. (N.S.) 16 (2013), no. 1, 18--27. https://projecteuclid.org/euclid.adjm/1376312566


Export citation

References

  • J. Adem, The relations on Steenrod powers of cohomology classes, Algebraic Geometry and Topology, a symposium in honour of S. Lefschetz, $191 - 238,$ Princeton Univ. Press, Princeton NJ $(1957).$
  • Kameko, M. Products of projective spaces as Steenrod modules. Thesis, John Hopkins University (1990).
  • M. Kameko, Generators of the cohomology of $BV_3.$ J. Math. Kyoto Univ. 38 (1998), 587-593.
  • M. Kameko, Generators of the cohomology of $BV_4.$ preprint, Toyama Univ. (2003).
  • M. F. Mothebe, Generators of the polynomial algebra ${\F}_{2}[x_{1},\ldots,x_{n}]$ as a module over the Steenrod algebra. Thesis, University of Manchester (1997).
  • T. N. Nam, ${\cal A}$-générateurs génériques pour l' algèbre polynomiale, Adv. Math. 186 (2004), 334-362.
  • F. P. Peterson, Generators of ${\bf H}^{*}({{\R}P}^{\infty} \bigwedge {{\R}P}^{\infty})$ as a module over the Steenrod algebra. Abstracts Amer. Math. Soc. 833 (1987).
  • F. P. Peterson, A-generators for certain polynomial algebras. Math. Proc. Camb. Phil. Soc. 105 (1989), 311–312.
  • J. H. Silverman, Hit polynomials and conjugation in the dual Steenrod algebra. Proc. Math. Camb. Phil. Soc. 123 (1998), 531–547.
  • W. M. Singer, The transfer in homological algebra. Math. Zeitschrift. 202 (1989), 493–523.
  • W. M. Singer, On the action of Steenrod squares on polynomials. Proc. Amer. Math. Soc. 111 (1991), 577–583.
  • N. Sum, The hit problem for the polynomial algebra of four variables. University of Quy Nhon, Viet Nam, preprint (2007).
  • N. Sum, The negative answer to Kameko's conjecture on the hit problem. Adv. Math. 225 (2010), 2365-2390.
  • N. Sum, On the Peterson hit problem. Preprint (2011).
  • R.M.W. Wood, Steenrod squares of polynomials and the Peterson conjecture. Math. Proc. Camb. Phil. Soc. 105 (1989), 307–309.