African Diaspora Journal of Mathematics
- Afr. Diaspora J. Math. (N.S.)
- Volume 15, Number 1 (2013), 74-96.
Functional Implicit Hyperbolic Fractional Order Differential Equations with Delay
S. Abbas, M. Benchohra, and J. J. Nieto
Full-text: Access denied (no subscription detected)
We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text
Abstract
In this paper we investigate the existence and uniqueness of solutions for the initial value problems (IVP for short), for some classes of functional hyperbolic differential equations with finite and infinite delay by using some fixed point theorems.
Article information
Source
Afr. Diaspora J. Math. (N.S.) Volume 15, Number 1 (2013), 74-96.
Dates
First available in Project Euclid: 9 August 2013
Permanent link to this document
https://projecteuclid.org/euclid.adjm/1376053760
Mathematical Reviews number (MathSciNet)
MR3091710
Zentralblatt MATH identifier
1278.26007
Subjects
Primary: 26A33: Fractional derivatives and integrals
Keywords
Partial hyperbolic differential equation fractional order left-sided mixed Riemann-Liouville integral mixed regularized derivative solution finite delay infinite delay fixed point
Citation
Abbas, S.; Benchohra, M.; Nieto, J. J. Functional Implicit Hyperbolic Fractional Order Differential Equations with Delay. Afr. Diaspora J. Math. (N.S.) 15 (2013), no. 1, 74--96.https://projecteuclid.org/euclid.adjm/1376053760
References
- S. Abbas and M. Benchohra, Darboux problem for perturbed partial differential equations of fractional order with finite delay, Nonlinear Anal. Hybrid Syst. 3 (2009), 597-604. Mathematical Reviews (MathSciNet): MR2561676
Digital Object Identifier: doi:10.1016/j.nahs.2009.05.001 - S. Abbas and M. Benchohra, Partial hyperbolic differential equations with finite delay involving the Caputo fractional derivative, Comm. Math. Anal. 7 (2009), 62-72.
- S. Abbas and M. Benchohra, Darboux problem for partial functional differential equations with infinite delay and Caputo's fractional derivative, Adv. Dynam. Syst. Appl. 5 (1) (2010), 1-19. Mathematical Reviews (MathSciNet): MR2771313
- S. Abbas and M. Benchohra, Fractional order partial hyperbolic differential equations involving Caputo's derivative, Stud. Univ. Babeş-Bolyai Math., 57 (4) (2012), 469-479. Mathematical Reviews (MathSciNet): MR3034096
- S. Abbas, M. Benchohra and A. Cabada, Partial neutral functional integro-differential equations of fractional order with delay, Bound. Value Prob. Vol. 2012 (2012), 128, 15 pp. Mathematical Reviews (MathSciNet): MR3016041
- S. Abbas, M. Benchohra and G.M. N'Guérékata, Topics in Fractional Differential Equations, Developments in Mathematics, 27, Springer, New York, 2012.
- S. Abbas, M. Benchohra and G.M. N'Guérékata, Asymptotic stability in nonlinear delay differential equations of fractional order, J. Nonlinear Evolution Equ. Appl. 2012, No. 7, 85-96.
- S. Abbas and M. Benchohra and J.J. Nieto, Global uniqueness results for fractional order partial hyperbolic functional differential equations. Adv. Difference Equ. 2011, Art. ID 379876, 25 pp.
- S. Abbas, M. Benchohra and J.J. Nieto, Global attractivity of solutions for nonlinear fractional order Riemann-Liouville Volterra-Stieltjes partial integral equations, Electron. J. Qual. Theory Differ. Equ. 81 (2012), 1-15. Mathematical Reviews (MathSciNet): MR2991437
- S. Abbas, M. Benchohra and A. N. Vityuk, On fractional order derivatives and Darboux problem for implicit differential equations, Frac. Calc. Appl. Anal. 15 (2) (2012), 168-182. Mathematical Reviews (MathSciNet): MR2897771
Digital Object Identifier: doi:10.2478/s13540-012-0012-5 - S. Abbas, M. Benchohra and Y. Zhou, Fractional order partial functional differential inclusions with infinite delay, Proc. A. Razmadze Math. Inst. 154 (2010), 1-19. Mathematical Reviews (MathSciNet): MR2768860
- S. Abbas, M. Benchohra and Y. Zhou, Fractional order partial hyperbolic functional differential equations with state-dependent delay, Int. J. Dynam. Syst. Differ. Equ. 3 (2011), 459-490. Mathematical Reviews (MathSciNet): MR2846392
Zentralblatt MATH: 1234.35294
Digital Object Identifier: doi:10.1504/IJDSDE.2011.042941 - W.G. Aiello, H.I. Freedman, J. Wu, Analysis of a model representing stage-structured population growth with state-dependent time delay. SIAM J. Appl. Math. 52 (1992), 855–869. Mathematical Reviews (MathSciNet): MR1163810
Zentralblatt MATH: 0760.92018
Digital Object Identifier: doi:10.1137/0152048 - O. Arino, K. Boushaba, A. Boussouar, A mathematical model of the dynamics of the phytoplankton-nutrient system. Nonlinear Anal. RWA. 1 (2000), 69–87. Mathematical Reviews (MathSciNet): MR1794939
Digital Object Identifier: doi:10.1016/S0362-546X(99)00394-6 - J. Belair, Population models with state-dependent delays, Lect. Notes Pure Appl. Maths., Dekker, New York, 131 (1990), 156-176. Mathematical Reviews (MathSciNet): MR1227361
- J. Bélair and M.C. Mackey, Consumer memory and price fluctuations on commodity markets: An intergrodifferential model. J. Dynam. Differential Equations 1 (1989), 299-325.
- J. Belair, M. C. Mackey, and J. Mahaffy, Age-structured and two delay models for erythropoiesis, Math. Biosciences 128 (1995),
- Y. Cao, J. Fan, and T.C. Card, The effects of state-dependent time delay on a stage-structured population growth model, Nonlinear Anal. TMA 19 (1992), 95-105. Mathematical Reviews (MathSciNet): MR1174461
- F. Chen, D. Sun, and J. Shi, Periodicity in a food-limited population model with toxicants and state-dependent delays. J. Math. Anal. Appl. 288 (2003), 136-146. Mathematical Reviews (MathSciNet): MR2019750
Zentralblatt MATH: 1087.34045
Digital Object Identifier: doi:10.1016/S0022-247X(03)00586-9 - C. Colijn, M. C. Mackey, Bifurcation and bistability in a model of hematopoietic regulation, SIAM J. Appl. Dynam. Syst. 6 (2007), 378-394. Mathematical Reviews (MathSciNet): MR2318659
Zentralblatt MATH: 1210.37033
Digital Object Identifier: doi:10.1137/050640072 - F. Crauste, Delay model of hematopoietic stem cell dynamics: asymptotic stability and stability switch, Math. Model. Nat. Phenom. 4 (2009), 28-47.
- T. Czlapinski, On the Darboux problem for partial differential-functional equations with infinite delay at derivatives. Nonlinear Anal. 44 (2001), 389–398. Mathematical Reviews (MathSciNet): MR1817102
- T. Czlapinski, Existence of solutions of the Darboux problem for partial differential-functional equations with infinite delay in a Banach space. Comment. Math. Prace Mat. 35 (1995), 111-122. Mathematical Reviews (MathSciNet): MR1384857
- S. Das, Functional Fractional Calculus, Springer-Verlag, Berlin, Heidelberg, 2011. Mathematical Reviews (MathSciNet): MR2807926
- A. Domoshnitsky, M. Drakhlin and E. Litsyn, On equations with delay depending on solution. Nonlinear Anal. TMA. 49 (2002), 689-701. Mathematical Reviews (MathSciNet): MR1894304
- R.D. Driver, and M.J. Norrisn, Note on uniqueness for a one-dimentional two-body problem of classical electrodynamics. Ann. Phys. 42 (1964), 347-351. Mathematical Reviews (MathSciNet): MR213097
Digital Object Identifier: doi:10.1016/0003-4916(67)90076-0 - W. G. Glockle and T. F. Nonnenmacher, A fractional calculus approach of selfsimilar protein dynamics, Biophys. J. 68 (1995), 46-53.
- A. Granas and J. Dugundji, Fixed Point Theory, Springer-Verlag, New York, 2003. Mathematical Reviews (MathSciNet): MR1987179
- J. Hale and J. Kato, Phase space for retarded equations with infinite delay, Funkcial. Ekvac. 21, (1978),11-41.
- J. K. Hale and S. Verduyn Lunel, Introduction to Functional -Differential Equations, Applied Mathematical Sciences, 99, Springer-Verlag, New York, 1993. Mathematical Reviews (MathSciNet): MR1243878
- F. Hartung, Linearized stability in periodic functional differential equations with state-dependent delays. J. Comput. Appl. Math. 174 (2005), 201-211. Mathematical Reviews (MathSciNet): MR2106436
Zentralblatt MATH: 1077.34074
Digital Object Identifier: doi:10.1016/j.cam.2004.04.006 - F. Hartung, Parameter estimation by quasilinearization in functional differential equations with state-dependent delays: a numerical study. Proceedings of the Third World Congress of Nonlinear Analysis, Part 7 (Catania, 2000) Nonlinear Anal. TMA. 47 (2001), 4557–4566. Mathematical Reviews (MathSciNet): MR1975850
- F. Hartung, T.L. Herdman, J. Turi. Parameter identification in classes of neutral differential equations with state-dependent delays. Nonlinear Anal. TMA 39 (2000), 305–325. Mathematical Reviews (MathSciNet): MR1722822
- F. Hartung, T. Krisztin, H.-O. Walther, J. Wu, Functional differential equations with state-dependent delays: theory and applications. Handbook of differential equations: ordinary differential equations. Vol. III, 435–545, Handb. Differ. Equ., Elsevier/North-Holland, Amsterdam, 2006 Mathematical Reviews (MathSciNet): MR2457636
Digital Object Identifier: doi:10.1016/S1874-5725(06)80009-X - E. Hernández, A. Prokopczyk and L. Ladeira, A note on partial functional differential equations with state-dependent delay. Nonlinear Anal. RWA 7 (2006), 510-519. Mathematical Reviews (MathSciNet): MR2235215
Digital Object Identifier: doi:10.1016/j.nonrwa.2005.03.014 - R. Hilfer, Applications of Fractional Calculus in Physics, World Scientific, Singapore, 2000. Mathematical Reviews (MathSciNet): MR1890104
- A.A. Kilbas, Hari M. Srivastava, and Juan J. Trujillo, Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies, 204. Elsevier Science B.V., Amsterdam, 2006.
- V. Kolmanovskii, and A. Myshkis, Introduction to the Theory and Applications of Functional-Differential Equations, Kluwer Academic Publishers, Dordrecht, 1999. Mathematical Reviews (MathSciNet): MR1680144
- F. Metzler, W. Schick, H. G. Kilian and T. F. Nonnenmacher, Relaxation in filled polymers: A fractional calculus approach, J. Chem. Phys. 103 (1995), 7180-7186.
- M.C. Mackey, Commodity price fluctuations: price dependent delays and non-linearities as explanatory factors. J. Econ. Theory 48 (1989), 479-59. Mathematical Reviews (MathSciNet): MR1013284
Zentralblatt MATH: 0672.90022
Digital Object Identifier: doi:10.1016/0022-0531(89)90039-2 - M.C. Mackey, and J. Milton, Feedback delays and the orign of blood cell dynamics, Comm. Theor. Biol. 1 (1990), 299-372.
- K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and Differential Equations, John Wiley, New York, 1993.
- M. D. Ortigueira, Fractional Calculus for Scientists and Engineers. Lecture Notes in Electrical Engineering, 84. Springer, Dordrecht, 2011.
- R. Qesmi, H.-O. Walther, Center-stable manifolds for differential equations with state-dependent delays. Discrete Contin. Dyn. Syst. 23 (2009), 1009–1033. Mathematical Reviews (MathSciNet): MR2461837
Digital Object Identifier: doi:10.3934/dcds.2009.23.1009 - S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integrals and Derivatives. Theory and Applications, Gordon and Breach, Yverdon, 1993. Mathematical Reviews (MathSciNet): MR1347689
- K. Schumacher, Existence and continuous dependence for differential equation with unbounded delay Arch. Rational Mech. Anal (1978), 315-355. Mathematical Reviews (MathSciNet): MR477379
Zentralblatt MATH: 0383.34052
Digital Object Identifier: doi:10.1007/BF00247662 - V. E. Tarasov, Fractional Dynamics. Applications of Fractional Calculus to Dynamics of Particles, Fields and Media. Springer, Heidelberg, 2010.
- A. N. Vityuk, Existence of solutions of partial differential inclusions of fractional order, Izv. Vyssh. Uchebn., Ser. Mat. 8 (1997), 13-19. Mathematical Reviews (MathSciNet): MR1485123
- A. N. Vityuk and A. V. Mykhailenko, On a class of fractional-order differential equation, Nonlinear Oscil. 11 (2008), 307-319. Mathematical Reviews (MathSciNet): MR2512745
- A. N. Vityuk and A. V. Mykhailenko, The Darboux problem for an implicit fractional-order differential equation, J. Math. Sci. 175 (2011), 391-401. Mathematical Reviews (MathSciNet): MR2977138
- H.-O. Walther, Linearized stability for semiflows generated by a class of neutral equations, with applications to state-dependent delays. J. Dynam. Differential Equations 22 (2010), 439–462.Mathematical Reviews (MathSciNet): MR2719915
Zentralblatt MATH: 1208.34116
Digital Object Identifier: doi:10.1007/s10884-010-9168-z
- You have access to this content.
- You have partial access to this content.
- You do not have access to this content.
More like this
- Existence of Square-Mean Almost Periodic Solutions to Some
Stochastic Hyperbolic Differential Equations with Infinite Delay
Bezandry, Paul H. and Diagana, Toka, Communications in Mathematical Analysis, 2010 - Positive Solutions for Multipoint Boundary Value Problems for Singular Fractional Differential Equations
Jleli, Mohamed, Karapinar, Erdal, and Samet, Bessem, Journal of Applied Mathematics, 2014 - Existence of Solutions for Nonlinear Impulsive Fractional Differential Equations of Order
α
∈
(
2
,
3
]
with Nonlocal Boundary Conditions
Zhang, Lihong, Wang, Guotao, and Song, Guangxing, Abstract and Applied Analysis, 2012
- Existence of Square-Mean Almost Periodic Solutions to Some
Stochastic Hyperbolic Differential Equations with Infinite Delay
Bezandry, Paul H. and Diagana, Toka, Communications in Mathematical Analysis, 2010 - Positive Solutions for Multipoint Boundary Value Problems for Singular Fractional Differential Equations
Jleli, Mohamed, Karapinar, Erdal, and Samet, Bessem, Journal of Applied Mathematics, 2014 - Existence of Solutions for Nonlinear Impulsive Fractional Differential Equations of Order
α
∈
(
2
,
3
]
with Nonlocal Boundary Conditions
Zhang, Lihong, Wang, Guotao, and Song, Guangxing, Abstract and Applied Analysis, 2012 - The Existence and Uniqueness of a Class of Fractional Differential Equations
Bai, Zhanbing, Sun, Sujing, and Chen, YangQuan, Abstract and Applied Analysis, 2014 - Existence and Attractivity Results for Some Fractional
Order Partial Integro-differential Equations with Delay
Abbas, S., Benchohra, M., and Diagana, T., African Diaspora Journal of Mathematics, 2013 - Multiplicity Result of Positive Solutions for Nonlinear Differential Equation of Fractional Order
Liu, Yang and Weiguo, Zhang, Abstract and Applied Analysis, 2012 - Some existence and uniqueness results for nonlinear fractional partial differential equations
Marasi, H.R., Afshari, H., and Zhai, C.B., Rocky Mountain Journal of Mathematics, 2017 - Nonlinear impulsive fractional differential equations
in Banach spaces
Guo, Tian Liang, Topological Methods in Nonlinear Analysis, 2013 - Existence of the Mild Solutions for Impulsive Fractional Equations with Infinite Delay
Dabas, Jaydev, Chauhan, Archana, and Kumar, Mukesh, International Journal of Differential Equations, 2011 - The Existence and Uniqueness of Solutions for a Class of Nonlinear Fractional Differential Equations with Infinite Delay
Babakhani, Azizollah, Baleanu, Dumitru, and Agarwal, Ravi P., Abstract and Applied Analysis, 2013


