African Diaspora Journal of Mathematics

On the Independent Domination Number of the Generalized Petersen Graphs

Adel P. Kazemi

Full-text: Open access

Abstract

Here we consider an infinite sub-family of the generalized Petersen graphs $P(n,k)$ for $n=2k+1\geq 3,$ and using the two algorithms that A. Behzad et al presented in [1], we determine an upper bound and a lower bound for the independent domination numbers of these graphs.

Article information

Source
Afr. Diaspora J. Math. (N.S.), Volume 10, Number 1 (2010), 18-22.

Dates
First available in Project Euclid: 17 May 2010

Permanent link to this document
https://projecteuclid.org/euclid.adjm/1274101581

Mathematical Reviews number (MathSciNet)
MR2591688

Zentralblatt MATH identifier
1241.05109

Subjects
Primary: 05C69

Keywords
independent domination number generalized Petersen graph

Citation

Kazemi, Adel P. On the Independent Domination Number of the Generalized Petersen Graphs. Afr. Diaspora J. Math. (N.S.) 10 (2010), no. 1, 18--22. https://projecteuclid.org/euclid.adjm/1274101581


Export citation

References

  • A. Behzad, M. Behzad, C. E. Praeger, On the domination number of the generalized petersen graphs, Discrete Mathematics 308% (2008), 603-610.
  • E. J. Cockayne, P. A. Dreyer Jr., S. M. Hedetniemi, S. T. Hedetniemi, Roman domination in graphs, Discrete Mathematics 278 (2004), 11-22.
  • T. W. Haynes, S. T. Hedetniemi, P. J. Slater, % Fundamentals of Domination in Graphs, Marcel Dekker, NewYork 1998.
  • M. L. Sarazin, W. Pacco, A. Previtali, Generalizing the generalized Petersen graphs, Discrete Mathematics, 307 (2007), 534-543.
  • M. E. Watkins, A theorem on Tait coloring with an application to the generalized Petersen graphs, J. Combin. Theory 6 (1969), 152-164.