## Advances in Differential Equations

- Adv. Differential Equations
- Volume 21, Number 1/2 (2016), 31-54.

### Sharp well-posedness results for the Schrödinger-Benjamin-Ono system

#### Abstract

This work is concerned with the Cauchy problem for a coupled Schrödinger-Benjamin-Ono system \begin{equation*} \left \{ \begin{array}{l} i\partial_tu+\partial_x^2u=\alpha uv, \hfill t\!\in\![-T,T], \ x\!\in\!\mathbb R,\\ \partial_tv+\nu\mathcal H\partial^2_xv=\beta \partial_x(|u|^2),\\ u(0,x)=\phi, \ v(0,x)=\psi, \ \ \ \ \ \ \ \ \ \ \ \ \ \hfill (\phi,\psi)\!\in\!H^{s}(\mathbb R)\!\times\!H^{s'}\!(\mathbb R). \end{array} \right. \end{equation*} In the ${\it non-resonant}$ case $(|\nu|\ne1)$, we prove local well-posedness for a large class of initial data. This improves the results obtained by Bekiranov, Ogawa and Ponce (1998). Moreover, we prove $C^2$-{\it ill-posedness} at ${\it low-regularity}$, and also when the difference of regularity between the initial data is large enough. As far as we know, this last ill-posedness result is the first of this kind for a nonlinear dispersive system. Finally, we also prove that the local well-posedness result obtained by Pecher (2006) in the ${\it resonant}$ case $(|\nu|=1)$ is sharp except for the end-point.

#### Article information

**Source**

Adv. Differential Equations, Volume 21, Number 1/2 (2016), 31-54.

**Dates**

First available in Project Euclid: 23 November 2015

**Permanent link to this document**

https://projecteuclid.org/euclid.ade/1448323163

**Mathematical Reviews number (MathSciNet)**

MR3449329

**Zentralblatt MATH identifier**

1342.35329

**Subjects**

Primary: 35G25: Initial value problems for nonlinear higher-order equations 35Q555 76B15: Water waves, gravity waves; dispersion and scattering, nonlinear interaction [See also 35Q30]

#### Citation

Domingues, Leandro. Sharp well-posedness results for the Schrödinger-Benjamin-Ono system. Adv. Differential Equations 21 (2016), no. 1/2, 31--54. https://projecteuclid.org/euclid.ade/1448323163