Advances in Differential Equations

Non-convex self-dual Lagrangians and new variational principles of symmetric boundary value problems: Evolution case

Abbas Moameni

Full-text: Access denied (no subscription detected) We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

In this work, we shall present some new variational principles for evolutionary equations by the virtue of the Non-convex self-dual (Nc-SD) Lagrangians. It is established that how lifting Nc-SD Lagrangians to path spaces allows one to associate to an evolution boundary value problem several potential functions, which can often be used with relative ease compared to other methods such as the use of Euler-Lagrange functionals. These Lagrangians, indeed provide new representations and formulations for the superposition of semi-convex functions and symmetric operators. They yield new variational resolutions for large class of hamiltonian partial differential equations with a variety of linear and nonlinear boundary conditions including many of the standard ones. They can be adapted to easily deal with both nonlinear and homogeneous boundary value problems and, in most cases, solutions generated using this new method have greater regularity than the solutions obtained using the standard Euler-Lagrange function.

Article information

Source
Adv. Differential Equations Volume 19, Number 5/6 (2014), 527-558.

Dates
First available in Project Euclid: 3 April 2014

Permanent link to this document
https://projecteuclid.org/euclid.ade/1396558060

Mathematical Reviews number (MathSciNet)
MR3189093

Zentralblatt MATH identifier
1344.49042

Subjects
Primary: 37K05: Hamiltonian structures, symmetries, variational principles, conservation laws 65K10: Optimization and variational techniques [See also 49Mxx, 93B40] 34B15: Nonlinear boundary value problems

Citation

Moameni, Abbas. Non-convex self-dual Lagrangians and new variational principles of symmetric boundary value problems: Evolution case. Adv. Differential Equations 19 (2014), no. 5/6, 527--558. https://projecteuclid.org/euclid.ade/1396558060.


Export citation