Advances in Differential Equations
- Adv. Differential Equations
- Volume 19, Number 5/6 (2014), 473-526.
Elliptic operators with unbounded diffusion and drift coefficients in $L^p$ spaces
G. Metafune, C. Spina, and C. Tacelli
Abstract
We prove that, for $\alpha > 2$, $\frac{N}{N-2+c} < p <\infty$, the operator $Lu=(1+|x|^\alpha)\Delta u+c|x|^{\alpha-1}\tfrac{x}{|x|}\cdot\nabla$ generates an analytic semigroup in $L^p$, which is contractive if and only if $p \ge \frac{N+\alpha-2}{N-2+c}$. Moreover, for $\alpha <\frac{N}{p'}+c$, we provide an explicit description of the domain. Spectral properties of the operator $L$ and kernel estimates are also obtained.
Article information
Source
Adv. Differential Equations Volume 19, Number 5/6 (2014), 473-526.
Dates
First available in Project Euclid: 3 April 2014
Permanent link to this document
https://projecteuclid.org/euclid.ade/1396558059
Mathematical Reviews number (MathSciNet)
MR3189092
Zentralblatt MATH identifier
1305.47029
Subjects
Primary: 47D07: Markov semigroups and applications to diffusion processes {For Markov processes, see 60Jxx} 35B50: Maximum principles 35J25: Boundary value problems for second-order elliptic equations 35J70: Degenerate elliptic equations
Citation
Metafune, G.; Spina, C.; Tacelli, C. Elliptic operators with unbounded diffusion and drift coefficients in $L^p$ spaces. Adv. Differential Equations 19 (2014), no. 5/6, 473--526. https://projecteuclid.org/euclid.ade/1396558059