Advances in Differential Equations

Solution surfaces for semilinear elliptic equations on rotated domains

Seth Armstrong and Renate Schaaf

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text


For the problem $$ \begin{align} \Delta u + \lambda f(u) &= 0 \quad\text{ in } \ \Omega, \;\ \lambda \in {\mathbf {R}} ^{+}, \\ u & = 0 \quad\text{ on } \ \partial \Omega, \end{align} $$ if $\Omega$ and $f$ satisfy certain hypotheses, a parameterized curve of positive solutions $\alpha\mapsto (u(\alpha),\lambda(\alpha))$ has been shown to exist, where $\alpha=max_{\Omega}u$. If $\Omega\subset{\mathbf {R}}^{n}$ is translated by $1/\epsilon$ and then rotated about a coordinate axis to obtain a new domain $\Omega_{\epsilon}\subset{\mathbf {R}}^{n+1}$, it can be shown that a surface of positive rotationally invariant solutions $(\alpha,\epsilon)\mapsto (\hat{u}(\alpha,\epsilon),\hat{\lambda}(\alpha,\epsilon))$ exists for the resulting problem $$ \begin{align} \Delta_{\epsilon}\hat{u} + \hat{\lambda} f(\hat{u}) & = 0 \quad\text{ in } \ \Omega_{\epsilon}, \ \hat{\lambda} \in {\mathbf {R}} ^{+} \\ \hat{u} & = 0 \quad\text{ on } \ \partial \Omega_{\epsilon}, \end{align} $$ where $\Delta_{\epsilon}$ is the Laplacian in the new variables and $(\hat{u}(\alpha,0),\hat{\lambda}(\alpha,0))=(u(\alpha),\lambda(\alpha))$. From this, we can give various examples of problems on domains with a large hole for which the structure of solutions can be well described.

Article information

Adv. Differential Equations, Volume 4, Number 2 (1999), 251-274.

First available in Project Euclid: 18 April 2013

Permanent link to this document

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 35J65: Nonlinear boundary value problems for linear elliptic equations
Secondary: 34B15: Nonlinear boundary value problems 47H15


Armstrong, Seth; Schaaf, Renate. Solution surfaces for semilinear elliptic equations on rotated domains. Adv. Differential Equations 4 (1999), no. 2, 251--274.

Export citation