## Advances in Differential Equations

- Adv. Differential Equations
- Volume 6, Number 12 (2001), 1517-1540.

### Radial solutions for a quasilinear equation via Hardy inequalities

M. García-Huidobro, A. Kufner, R. Manásevich, and C. S. Yarur

#### Abstract

We establish an analogue of the Sobolev critical exponent for the inclusion $V^p(a)\hookrightarrow L^q(b)$, where $a$ and $b$ are weight functions, $V^p(a)$ is a weighted Sobolev space, and $L^q(b)$ is a weighted Lebesgue space. We use this result to study existence of radial solutions to the problem with weights $$(D_w)\quad\quad\begin{cases} -{\rm div}(\tilde{a}(|x|)|\nabla u|^{p-2}\nabla u)= \tilde{b}(|x|)|u|^{q-2}u \qquad \mbox{in} \quad \Omega\subset \mathbb R^N ,\\~~u=0\qquad \mbox{on}\quad \partial\Omega, \end{cases} $$ where $\Omega$ is a ball, $1 <p <q,$ and $\tilde{a}(|x|)=|x|^{1-N}a(|x|),$ $\tilde{b}(|x|)=|x|^{1-N}b(|x|)$. We are interested in the interplay between $q$ and a suitable critical exponent and its consequences for the existence and nonexistence of positive solutions of problem $(D_w).$

#### Article information

**Source**

Adv. Differential Equations Volume 6, Number 12 (2001), 1517-1540.

**Dates**

First available in Project Euclid: 2 January 2013

**Permanent link to this document**

https://projecteuclid.org/euclid.ade/1357139957

**Mathematical Reviews number (MathSciNet)**

MR1858431

**Zentralblatt MATH identifier**

1140.35441

**Subjects**

Primary: 35J60: Nonlinear elliptic equations

Secondary: 34B16: Singular nonlinear boundary value problems 35B33: Critical exponents 35J25: Boundary value problems for second-order elliptic equations

#### Citation

García-Huidobro, M.; Kufner, A.; Manásevich, R.; Yarur, C. S. Radial solutions for a quasilinear equation via Hardy inequalities. Adv. Differential Equations 6 (2001), no. 12, 1517--1540. https://projecteuclid.org/euclid.ade/1357139957