## Advances in Differential Equations

- Adv. Differential Equations
- Volume 7, Number 3 (2002), 257-296.

### Semilinear elliptic equations and systems with measure data: existence and a priori estimates

Marie Françoise Bidaut-Véron and Cecilia Yarur

#### Abstract

We give existence results and a priori estimates for a semilinear elliptic problem of the form \begin{equation*} \left\{ \begin{array}{l} -\Delta w=w^{Q}+\mu ,\qquad \text{in \thinspace }\Omega , \\ w=\lambda ,\qquad \qquad \qquad \quad \text{on }\partial \Omega , \end{array} \right. \end{equation*} where $Q>0,$ and $\mu $ and $\lambda $ are nonnegative Radon measures in $ \Omega $ and $\partial \Omega ,$ with $\int_{\Omega }\rho \,d\mu <+\infty ,$ where $\rho $ is the distance to $\partial \Omega .$ We extend the results to the case of systems \begin{equation*} \left\{ \begin{array}{l} -\Delta u=v^{p}+\mu ,\qquad -\Delta v=u^{q}+\eta ,\qquad \text{in }\Omega , \\ u=\lambda ,\qquad v=\kappa ,\qquad \text{on }\partial \Omega , \end{array} \right. \end{equation*} with $p,q>0,$ and the same assumptions on $\eta $ and $\kappa .$

#### Article information

**Source**

Adv. Differential Equations Volume 7, Number 3 (2002), 257-296.

**Dates**

First available in Project Euclid: 27 December 2012

**Permanent link to this document**

https://projecteuclid.org/euclid.ade/1356651826

**Mathematical Reviews number (MathSciNet)**

MR1867688

**Zentralblatt MATH identifier**

1223.35168

**Subjects**

Primary: 35J65: Nonlinear boundary value problems for linear elliptic equations

Secondary: 35B45: A priori estimates 35R05: Partial differential equations with discontinuous coefficients or data

#### Citation

Bidaut-Véron, Marie Françoise; Yarur, Cecilia. Semilinear elliptic equations and systems with measure data: existence and a priori estimates. Adv. Differential Equations 7 (2002), no. 3, 257--296. https://projecteuclid.org/euclid.ade/1356651826