Advances in Differential Equations

Existence of solutions for reaction-diffusion systems with $L^1$ data

M. Bendahmane, M. Langlais, and M. Saad

Full-text: Open access

Abstract

We are concerned with a system of nonlinear partial differential equations modeling the spread of an epidemic disease through a heterogeneous habitat. Assuming no-flux boundary conditions and $L^1$ data, we prove the existence of at least one weak solution.

Article information

Source
Adv. Differential Equations, Volume 7, Number 6 (2002), 743-768.

Dates
First available in Project Euclid: 27 December 2012

Permanent link to this document
https://projecteuclid.org/euclid.ade/1356651736

Mathematical Reviews number (MathSciNet)
MR1894865

Zentralblatt MATH identifier
1036.35086

Subjects
Primary: 35K57: Reaction-diffusion equations
Secondary: 35D05 35K50 92D30: Epidemiology

Citation

Bendahmane, M.; Langlais, M.; Saad, M. Existence of solutions for reaction-diffusion systems with $L^1$ data. Adv. Differential Equations 7 (2002), no. 6, 743--768. https://projecteuclid.org/euclid.ade/1356651736


Export citation