Advances in Differential Equations

Multiple solutions of conformal metrics with negative total curvature

Kuo-Shung Cheng and Chang-Shou Lin

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text


In this paper, we consider the Gaussian curvature equation \begin{equation}{\label{eq:01}} {\Delta} u+K(x)e^{2u}=0 \quad \mbox{in} \ {{\bf R}}^2 , \end{equation} where ${\Delta}=\sum_{i=1}^{2}\frac{\partial^2}{\partial x_i^2}$ is the Laplace operator in ${{\bf R}}^2$. $K(x)$ is always assumed to be of one sign for $|x|$ large. For each $K$, we introduce $\alpha_1=\alpha_1(K)$ by \begin{equation} \alpha_1=\sup \{\alpha \in {{\bf R}} : \int_{{{\bf R}}^2} |K(x)|(1+|x|^2)^{\alpha}\,dx <+{\infty} \} . \tag*{(0.1)} \end{equation} Suppose that $\alpha_1>0$, $K(x)$ is positive somewhere in ${{\bf R}}^2$ and satisfies \begin{equation} \int_{{{\bf R}}^2}K(x)\,dx <0 . \tag*{(0.2)} \end{equation} We prove that there exists $0 <\alpha_0\leq\alpha_1$ such that for any given $\alpha \in (0,\alpha_0)$, there exist at least two solutions of (0.1) with $-2\pi \alpha$ as their total curvature.

Article information

Adv. Differential Equations, Volume 5, Number 10-12 (2000), 1253-1288.

First available in Project Euclid: 27 December 2012

Permanent link to this document

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 53C21: Methods of Riemannian geometry, including PDE methods; curvature restrictions [See also 58J60]
Secondary: 35J60: Nonlinear elliptic equations 53A30: Conformal differential geometry


Cheng, Kuo-Shung; Lin, Chang-Shou. Multiple solutions of conformal metrics with negative total curvature. Adv. Differential Equations 5 (2000), no. 10-12, 1253--1288.

Export citation