Advances in Differential Equations

On Schrödinger-Boussinesq equations

F. Linares and A. Navas

Full-text: Open access

Abstract

We study local and global well-posedness for the initial-value problem associated to the one-dimensional Schrödinger-Boussinesq equations in low regularity spaces. To establish these results we make use of sharp $L^p$-$L^q$ estimates.

Article information

Source
Adv. Differential Equations, Volume 9, Number 1-2 (2004), 159-176.

Dates
First available in Project Euclid: 18 December 2012

Permanent link to this document
https://projecteuclid.org/euclid.ade/1355867971

Mathematical Reviews number (MathSciNet)
MR2099609

Zentralblatt MATH identifier
1103.35094

Subjects
Primary: 35Q55: NLS-like equations (nonlinear Schrödinger) [See also 37K10]
Secondary: 35Q35: PDEs in connection with fluid mechanics 76B15: Water waves, gravity waves; dispersion and scattering, nonlinear interaction [See also 35Q30]

Citation

Linares, F.; Navas, A. On Schrödinger-Boussinesq equations. Adv. Differential Equations 9 (2004), no. 1-2, 159--176. https://projecteuclid.org/euclid.ade/1355867971


Export citation