Advances in Differential Equations

Higher integrability for parabolic equations of $p(x,t)$-Laplacian type

Stanislav Antontsev and Vasilii Zhikov

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text


Let $\Omega\subset\mathbb{R}^{n}$, $n\geq2$, be a bounded domain withboundary $\partial\Omega$, and $Q=\Omega\times(0,T]$ be a cylinder of height $Ts < \infty$. We study local weak solutions of the parabolic equation \[ Lu\equiv\frac{\partial u}{\partial t}-div\left( \left| \nabla u\right| ^{p(z)-2}\nabla u\right)=0,\quad z=(x,t)\in\Omega\times(0,T), \] with variable exponent of nonlinearity $p$. We assume that $p(z)\in C(\Omega)$ and is such that \[ \frac{2n}{n+2}s < \alpha\leq p(z)\leq\beta < \infty,\quad z\in Q, \] \[ \left| p(z_{1})-p(z_{2})\right| \leq\omega(|z_{1}-z_{2}|)\quad \forall \,(z_{1},\,z_{2})\in\overline{Q}, \] \[ \overline{\lim_{\tau\rightarrow0}}\quad \omega(\tau)\ln\frac{1}{\tau}s <\infty. \] We prove that the weak solution is bounded and establish Meyer's type estimates: there exists a positive constant $\varepsilon>0$ such that for every subdomain $Q^{\prime}$, $\overline{Q^{\prime}}\subset Q$, \[ \int_{Q^{\prime}}\left| \nabla u\right| ^{p(z)(1+ \varepsilon )}dz s <\infty. \]

Article information

Adv. Differential Equations, Volume 10, Number 9 (2005), 1053-1080.

First available in Project Euclid: 18 December 2012

Permanent link to this document

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 35K55: Nonlinear parabolic equations
Secondary: 35B05: Oscillation, zeros of solutions, mean value theorems, etc. 35D10 35K65: Degenerate parabolic equations


Antontsev, Stanislav; Zhikov, Vasilii. Higher integrability for parabolic equations of $p(x,t)$-Laplacian type. Adv. Differential Equations 10 (2005), no. 9, 1053--1080.

Export citation